WikiSort.ru - Не сортированное

ПОИСК ПО САЙТУ | о проекте
Сейчас на Марсе сухой и холодный климат (слева), но на ранних этапах эволюции планеты, скорее всего, была жидкая вода и плотная атмосфера (справа).

В настоящее время Марс — наиболее интересная для изучения планета Солнечной системы. Поскольку он обладает атмосферой, хотя и очень разреженной, по сравнению с земной, можно говорить о процессах в ней, формирующих погоду, а следовательно, и климат. Он не особо благоприятен для человека, однако наиболее близок к существующему на нашей планете. Предположительно в прошлом климат Марса мог быть более тёплым и влажным, а на поверхности присутствовала жидкая вода и даже шли дожди[⇨].

Изучение

История наблюдений

Текущие наблюдения

Погода

Температура

Средняя температура на Марсе значительно ниже, чем на Земле: −63°С[1]. Поскольку атмосфера Марса сильно разрежена, она плохо сглаживает суточные колебания температуры поверхности. При наиболее благоприятных условиях летом на дневной половине планеты воздух прогревается до 20° С (а на экваторе — до +27 °C) — вполне приемлемая температура для жителей Земли. Максимальная температура воздуха, зафиксированная марсоходом «Спирит», составила +35 °C[2]. Но зимней ночью мороз может достигать даже на экваторе от −80 °C до −125° С, а на полюсах ночная температура может падать до −143 °C[3][4]. Однако суточные колебания температуры не столь значительны, как на безатмосферных Луне и Меркурии[5]. На Марсе существуют температурные оазисы, в районах «озера» Феникс (плато Солнца) и земли Ноя[en] перепад температур составляет от −53°С до +22°С летом и от −103°С до −43°С зимой. Таким образом, Марс — весьма холодный мир, климат там намного суровее, чем в Антарктиде[3].

Климат Марса, 4.5ºS, 137.4ºE (с 2012 - до сегодняшнего[когда?])
Показатель Янв. Фев. Март Апр. Май Июнь Июль Авг. Сен. Окт. Нояб. Дек. Год
Абсолютный максимум, °C 6 6 1 0 7 23 30 19 7 7 8 8 30
Средний максимум, °C −7 −18 −23 −20 −4 0 2 1 1 4 −1 −3 −5,7
Средний минимум, °C −82 −86 −88 −87 −85 −78 −76 −69 −68 −73 −73 −77 −78,5
Абсолютный минимум, °C −95 −127 −114 −97 −98 −125 −84 −80 −78 −79 −83 −110 −127
Источник: Centro de Astrobiología [6], Погодный твиттер Марсианской научной лаборатории [7]

Атмосферное давление

Атмосфера Марса более разрежена, чем воздушная оболочка Земли, и более чем на 95 % состоит из углекислого газа, а содержание кислорода и воды составляет доли процента. Среднее давление атмосферы у поверхности составляет в среднем 0,6 кПа или 6 мбар, что в 160 меньше земного или равно земному на высоте почти 35 км от поверхности Земли)[5]. Атмосферное давление претерпевает сильные суточные и сезонные изменения[8].

Облачность и осадки

Иней на поверхности Марса (снимок аппарата «Викинг-2»)

Водяного пара в марсианской атмосфере не более тысячной доли процента, однако по результатам недавних (2013 г.) исследований, это всё же больше, чем предполагалось ранее, и больше, чем в верхних слоях атмосферы Земли[9], и при низком давлении и температуре он находится в состоянии, близком к насыщению, поэтому часто собирается в облака. Как правило, водяные облака формируются на высотах 10-30 км над поверхностью. Они сосредоточены в основном на экваторе и наблюдаются практически на протяжении всего года[5]. Облака, наблюдаемые на высоких уровнях атмосферы (более 20 км), образуются в результате конденсации CO2. Этот же процесс ответствен за формирование низких (на высоте менее 10 км) облаков полярных областей в зимний период, когда температура атмосферы опускается ниже точки замерзания CO2 (-126 °С); летом же формируются аналогичные тонкие образования из льда Н2О[10]

Образования конденсационной природы представлены также туманами (или дымками). Они часто стоят над низинами — каньонами, долинами — и на дне кратеров в холодное время суток[10][3].

В атмосфере Марса могут возникать метели. Марсоход «Феникс» в 2008 году наблюдал[11] в приполярных областях виргу — осадки под облаками, испаряющиеся не долетая до поверхности планеты. По первоначальным оценкам, скорость падения осадков в вирге была очень малой. Однако недавнее (2017 г.) моделирование[12] марсианских атмосферных явлений показало, что на средних широтах, где происходит регулярная смена дня и ночи, после заката облака резко охлаждаются, и это может приводить к метелям, скорость частиц во время которых в действительности может достигать 10 м/с. Учёные допускают, что сильные ветра в совокупности с низкой облачностью (обычно марсианские облака формируются на высоте 10-20 км) могут привести к тому, что снег будет выпадать на поверхность Марса. Это явление подобно земным микропорывам — шквалам из нисходящего ветра со скоростью до 35 м/с, часто связанный с грозами[13].

Снег действительно наблюдался неоднократно[4]. Так, зимой 1979 г. в районе посадки «Викинга-2» выпал тонкий слой снега, который пролежал несколько месяцев[3].

Пылевые бури и смерчи

Пыльные вихри, сфотографированные марсоходом «Оппортьюнити». Цифры в левом нижнем углу отображают время в секундах с момента первого кадра

Характерная особенность атмосферы Марса — постоянное присутствие пыли, частицы которой имеют размер порядка 1,5 мкм и состоят в основном из оксида железа[10][8][14]. Малая сила тяжести позволяет даже разреженным потокам воздуха поднимать огромные облака пыли на высоту до 50 км. А ветры, являющиеся одним из проявлений перепада температур, часто дуют над поверхностью планеты[4] (особенно в конце весны — начале лета в южном полушарии, когда разница температур между полушариями особенно резкая), и их скорость доходит до 100 м/с. Таким образом формируются обширные пылевые бури, давно наблюдаемые в виде отдельных желтых облаков, а иногда в виде сплошной желтой пелены, охватывающей всю планету. Чаще всего пылевые бури возникают вблизи полярных шапок, их продолжительность может достигать 50—100 суток. Слабая желтая мгла в атмосфере, как правило, наблюдается после крупных пылевых бурь и без труда обнаруживается фотометрическими и поляриметрическими методами[10][3][15].

Пылевые бури, хорошо наблюдавшиеся на снимках, сделанных с орбитальных аппаратов, оказались слабозаметными при съемке с посадочных аппаратов. Прохождение пылевых бурь в местах посадок этих космических станций фиксировалось лишь по резкому изменению температуры, давления и очень слабому потемнению общего фона неба. Слой пыли, осевшей после бури в окрестностях мест посадок «Викингов», составил лишь несколько микрометров. Все это свидетельствует о довольно низкой несущей способности марсианской атмосферы[10].

С сентября 1971 по январь 1972 г. на Марсе происходила глобальная пылевая буря, которая даже помешала фотографированию поверхности с борта зонда «Маринер-9»[3]. Масса пыли в столбе атмосферы (при оптической толщине от 0,1 до 10), оцененная в этот период, составляла от 7,8⋅10-5 до 1,66⋅10-3г/см2. Таким образом, общий вес пылевых частиц в атмосфере Марса за период глобальных пылевых бурь может доходить до 108 — 109 т, что соизмеримо с общим количеством пыли в земной атмосфере[10].

Пылевые смерчи — еще один пример процессов поднятия в воздух пыли, возникающий из-за суточных вариаций температур[3] вблизи поверхности Марса. Из-за очень низкой плотности атмосферы красной планеты смерчи там больше похожи на торнадо, возвышающиеся на несколько километров в высоту и имеющие сотни метров в поперечнике. Они формируются настолько стремительно, что оказавшись внутри неё, гипотетический наблюдатель внезапно не в состоянии был бы видеть больше, чем несколько сантиметров перед собой. Ветер достигает 30 м/с. Пылевые смерчи на Марсе будут серьезной проблемой для астронавтов, которым придется с ними столкнуться по прибытии на планету; дополнительной трудностью является то, что трение пыли в воздухе создает электричество. Из-за отсутствия эрозии на поверхности планеты на ней остаются следы этих явлений, и марсоходам удалось сфотографировать следы, оставленные ранее пылевыми дьяволами[4].

Вопрос о наличии воды

Жидкая вода в чистом виде не может стабильно существовать на поверхности Марса при нынешних климатических условиях.

Для стабильного существования чистой воды в жидком состоянии температура и парциальное давление водяного пара в атмосфере должны быть выше тройной точки на фазовой диаграмме, тогда как сейчас они далеки от соответствующих значений. И действительно, исследования, проведённые космическим аппаратом «Маринер-4» в 1965 году, показали, что жидкой воды на Марсе в настоящее время нет, но данные марсоходов НАСА «Спирит» и «Оппортьюнити» свидетельствуют о наличии воды в прошлом. 31 июля 2008 года вода в состоянии льда была обнаружена на Марсе в месте посадки космического аппарата НАСА «Феникс». Аппарат обнаружил залежи льда непосредственно в грунте. Есть несколько фактов в поддержку утверждения о присутствии воды на поверхности планеты в прошлом. Во-первых, найдены минералы, которые могли образоваться только в результате длительного воздействия воды. Во-вторых, очень старые кратеры практически стёрты с лица Марса. Современная атмосфера не могла вызвать такого разрушения. Изучение скорости образования и эрозии кратеров позволило установить, что сильнее всего ветер и вода разрушали их около 3,5 млрд лет назад. Приблизительно такой же возраст имеют и многие промоины.

НАСА 28 сентября 2015 года объявило что на Марсе в настоящее время существуют сезонные потоки жидкой соленой воды. Эти образования проявляют себя в теплое время года и исчезают — в холодное. К своим выводам планетологи пришли, проанализировав высококачественные снимки, полученные научным инструментом High Resolution Imaging Science Experiment (HiRISE) орбитального марсианского аппарата Mars Reconnaissance Orbiter (MRO).

25 июля 2018 года вышел доклад об открытии, основанном на исследованиях радаром MARSIS. Работы показали наличие подлёдного озера на Марсе, расположенного на глубине 1,5 км подо льдом Южной полярной шапки (на Planum Australe), шириной около 20 км. Это стало первым известным постоянным водоёмом на Марсе.[16]

Времена года

Как и на Земле, на Марсе происходит смена времен года из-за наклона оси вращения к плоскости орбиты, поэтому зимой в северном полушарии полярная шапка растет, а в южном почти исчезает, а через полгода полушария меняются местами. При этом из-за достаточно большого эксцентриситета орбиты планеты в перигелии (зимнее солнцестояние в северном полушарии) она получает до 40 % больше солнечного излучения, чем в афелии[15], и в северном полушарии зима короткая и относительно умеренная, а лето длинное, но прохладное, в южном же наоборот — лето короткое и относительно теплое, а зима длинная и холодная. В связи с этим южная шапка зимой разрастается до половины расстояния полюс-экватор, а северная — только до трети. Когда на одном из полюсов наступает лето, углекислый газ из соответствующей полярной шапки испаряется и поступает в атмосферу; ветры переносят его к противоположной шапке, где он снова замерзает. Таким образом происходит круговорот углекислого газа, который наряду с разными размерами полярных шапок вызывает изменение давления атмосферы Марса по мере его обращения вокруг Солнца[5][3][4]. За счёт того, что зимой до 20—30 % всей атмосферы замерзает в полярной шапке, давление в соответствующей области соответственно падает[8].

Изменения со временем

Изменение угла наклона оси вращения Марса, эксцентриситета его орбиты и поступающего на его поверхность солнечного излучения за последние 10 млн лет.

Как и на Земле, климат Марса претерпевал долгосрочные изменения и на ранних этапах эволюции планеты сильно отличался от нынешнего. Различие состоит в том, что главную роль в циклических изменениях климата Земли играют изменение эксцентриситета орбиты и прецессия оси вращения, притом что наклон оси вращения остаётся примерно постоянным благодаря стабилизирующему воздействию Луны, тогда как Марс, не имея такого большого спутника, может претерпевать существенные изменения наклона оси его вращения. Расчёты показали[17], что наклон оси вращения Марса, составляющий сейчас 25° - примерно ту же величину, что и у Земли, - в недавнем прошлом был равен 45°, а в масштабе миллионов лет мог колебаться от 10° до 50°.

Марс в ледниковый период 2,1 млн - 400 тыс лет назад, когда ось его вращения предположительно была сильно наклонена к плоскости орбиты. Полярные шапки разрастаются до низких широт порядка 30°.

Историю изменений климата на Марсе можно проследить путём анализа слоистых отложений в полярных шапках, на участках, где они доступны для наблюдения в разломах и трещинах. Полагая, что светлые слои образованы отложением льда, а тёмные - отложением пыли, по их числу и толщине (если знать время нарастания) можно судить о циклических вариациях климата и их корреляции с изменением угла наклона оси вращения и эксцентриситета орбиты Марса. Расчёты показывают, что циклы изменения этих параметров длятся всего 2,5 млн лет[18].

При сильном (порядка 45°) наклоне оси вращения планеты на полярные области попадает больше солнечного излучения, и они становятся самыми тёплыми участками. Вода и CO2 в полярных шапках из твёрдого состояния переходят в виде газа в атмосферу, становящуюся таким образом более плотной и потому более тёплой и влажной, а атмосферное давление увеличивается до значений, необходимых для существования воды на поверхности Марса в жидкой фазе. Запускается круговорот воды, подобный происходящему на Земле. Водяной пар из атмосферы конденсируется в лёд и снег в низких широтах, где теперь холодно, проникает в почву и замерзает там. Когда же наклон оси вращения уменьшается, в полярных областях снова становится холоднее, а в экваториальных - теплее; вода, замёрзшая в приповерхностных слоях, возвращается в атмосферу в виде пара, перемещается к полюсам и снова конденсируется в ледяные полярные шапки. Большая часть углекислого газа также возвращается в полярные шапки, тем самым делая атмосферу очень разреженной[19]. Такие изменения происходят в масштабах сотен тысяч и даже миллионов лет. По результатам некоторых расчётов, за последние 5 миллионов лет водяной лёд переместился с полюсов к экватору и обратно более 40 раз[20].

Судя по обнаруженному в кратерах льду на довольно низких (порядка 40°) широтах, где температуры по идее слишком высоки для того, чтобы он был стабилен в течение долгого времени, последний ледниковый период ещё не завершился[19].

Измерения соотношений изотопов аргона, подтверждающие потерю значительной части атмосферы Марса.

Итак, климат раннего Марса сильно отличался от наблюдаемого сегодня. Присутствие жидкой воды, подтверждённое многочисленными свидетельствами, предполагает существование достаточно плотной атмосферы. Со временем бо́льшая её часть рассеялась — скорее всего, посредством нетермального механизма ионного распыления частицами солнечного ветра, происходящего из отсутствия у планеты магнитного поля. Это подтверждается измерениями соотношений изотопов аргона, проведёнными аппаратами «Викинг» в 1976 году[21], "Curiosity" в 2013 году[22][23] и «MAVEN» в 2017 году[24], с этим согласуются и данные изучения марсианских метеоритов[25].

См. также

Примечания

  1. Williams, David R. Mars Fact Sheet. National Space Science Data Center. NASA (September 1, 2004). Проверено 28 сентября 2017.
  2. Extreme Planet Takes Its Toll. Mars Exploration Rover Mission: Spotlight. Jet Propulsion Lab. June 12, 2007
  3. 1 2 3 4 5 6 7 8 Марс - красная звезда. Описание местности. Атмосфера и климат. galspace.ru - Проект "Исследование Солнечной системы". Проверено 29 сентября 2017.
  4. 1 2 3 4 5 Максим Заболоцкий. Общие сведения об атмосфере Марса. Spacegid.com (21.09.2013). Проверено 20 октября 2017.
  5. 1 2 3 4 Атмосфера Марса (недоступная ссылка). UNIVERSE-PLANET // ПОРТАЛ В ДРУГОЕ ИЗМЕРЕНИЕ. Проверено 29 сентября 2017. Архивировано 1 октября 2017 года.
  6. Centro de Astrobiología Архивировано 25 октября 2015 года.
  7. Погодный твиттер Марсианской научной лаборатории
  8. 1 2 3 Mars Pathfinder - Science Results - Atmospheric and Meteorological Properties. nasa.gov. Проверено 20 апреля 2017.
  9. В атмосфере Марса много водяного пара, infuture.ru (13 июня 2013). Проверено 30 сентября 2017.
  10. 1 2 3 4 5 6 Кузьмин Р. О., Галкин И. Н. Атмосфера Марса // Как устроен Марс. — Москва: Знание, 1989. — Т. 8. — 64 с. — (Космонавтика, астрономия). 26 953 экз. ISBN 5-07000280-5.
  11. Nancy Atkinson. SNOW IS FALLING FROM MARTIAN CLOUDS, Universe Today (29 Sep 2008). Проверено 30 августа 2017.
  12. Aymeric Spiga, David P. Hinson, Jean-Baptiste Madeleine, Thomas Navarro, Ehouarn Millour, François Forget & Franck Montmessin. Snow precipitation on Mars driven by cloud-induced night-time convection : [англ.] // Nature Geoscience. — 2017. DOI:10.1038/ngeo3008.
  13. Королёв, Владимир. На Марсе предсказали снежные метели с микропорывами, N+1 (23 Авг 2017). Проверено 30 августа 2017.
  14. M. T. Lemmon et. al. Atmospheric Imaging Results from the Mars Exploration Rovers: Spirit and Opportunity : [англ.] // Science. — 2004. — Т. 306, вып. 5702 (3 December). — С. 1753-1756. DOI:10.1126/science.1104474.
  15. 1 2 N. Mangold, D. Baratoux, O. Witasse, T. Encrenaz, C. Sotin. Mars: a small terrestrial planet : [англ.] // The Astronomy and Astrophysics Review. — 2016. — Т. 24,  1 (16 December). — С. 15. DOI:10.1007/s00159-016-0099-5.
  16. CNN, Ashley Strickland,. Evidence detected of lake beneath Mars' surface, CNN. Проверено 28 июля 2018.
  17. Jihad Touma, Jack Wisdom. The Chaotic Obliquity of Mars : [англ.] // Science. — 1993. — Т. 259,  5099 (26 February). — С. 1294-1297. Bibcode: 1993Sci...259.1294T. DOI:10.1126/science.259.5099.1294. PMID 17732249.
  18. Laskar, Jacques; Levrard, Benjamin; Mustard, John F. Orbital forcing of the martian polar layered deposits : [англ.] // Nature. — 2002. — Т. 419,  6905 (26 September). — С. 375-377. DOI:10.1038/nature01066.
  19. 1 2 Ice Ages (англ.). Mars Education at Arizona State University. Проверено 23 июля 2017.
  20. Марс раскачался: 40 ледниковых периодов за 5 млн. лет (англ.). Популярная механика (18.09.2007). Проверено 23 июля 2017.
  21. Composition of the Atmosphere at the Surface of Mars: Detection of Argon-36 and Preliminary Analysis. Owen T. Biemann K. : [англ.] // Science. — 1976. — Т. 193, вып. 4255. — С. 801–803. DOI:10.1126/science.193.4255.801.
  22. Sushil K. Atreya, Melissa G. Trainer, Heather B. Franz, Michael H. Wong, Heidi L. K. Manning, Charles A. Malespin, Paul R. Mahaffy, Pamela G. Conrad, Anna E. Brunner, Laurie A. Leshin, John H. Jones, Christopher R. Webster, Tobias C. Owen, Robert O. Pepin, R. Navarro-González. Primordial argon isotope fractionation in the atmosphere of Mars measured by the SAM instrument on Curiosity and implications for atmospheric loss : [англ.] // Geophysical Research Letters. — 2013. — Т. 40, вып. 21 (6 November). — С. 5605–5609. DOI:10.1002/2013GL057763.
  23. Wall, Mike. Most of Mars' Atmosphere Is Lost in Space, Space.com (April 8, 2013). Проверено 29 июля 2017.
  24. B. M. Jakosky, M. Slipski, M. Benna, P. Mahaffy, M. Elrod, R. Yelle, S. Stone, N. Alsaeed. Mars’ atmospheric history derived from upper-atmosphere measurements of 38Ar/36Ar : [англ.] // Science. — 2017. — Т. 355, вып. 6332 (31 March). — С. 1408-1410. DOI:10.1126/science.aai7721.
  25. Bogard DD, Clayton RN, Marti K, Owen T., Turner G. Martian volatiles: Isotopic composition origin, and evolution // Space Science Reviews. — 2001. — Т. 96, вып. 1-4 (апрель). — С. 425–458. DOI:10.1023/A:1011974028370 DO.

Ссылки

Данная страница на сайте WikiSort.ru содержит текст со страницы сайта "Википедия".

Если Вы хотите её отредактировать, то можете сделать это на странице редактирования в Википедии.

Если сделанные Вами правки не будут кем-нибудь удалены, то через несколько дней они появятся на сайте WikiSort.ru .




Текст в блоке "Читать" взят с сайта "Википедия" и доступен по лицензии Creative Commons Attribution-ShareAlike; в отдельных случаях могут действовать дополнительные условия.

Другой контент может иметь иную лицензию. Перед использованием материалов сайта WikiSort.ru внимательно изучите правила лицензирования конкретных элементов наполнения сайта.

2019-2024
WikiSort.ru - проект по пересортировке и дополнению контента Википедии