Квазимногообра́зие (от лат. quas(i) «наподобие», «нечто вроде») в универсальной алгебре — класс алгебраических систем фиксированной сигнатуры, аксиоматизируемый набором квазитождеств (хорновскими дизъюнктами).
В отличие от многообразий — классов алгебраических систем, аксиоматизируемых тождествами — особую роль в теории квазимногообразий играют теоретико-модельные методы, тогда как многообразия в основном рассматриваются для алгебр (алгебраических систем без отношений в сигнатуре) и изучаются общеалгебраическими методами[1].
Для алгебраической системы с набором операций и отношений квазиатомарными считаются формулы вида:
где , , а — символы переменных. (Иногда равенство включают в сигнатуру алгебраической системы как отношение и в этом случае достаточно формул первого вида.)
Квазитождества — формулы вида:
где — квазиатомарные формулы с переменными . Квазимногообразие — класс алгебраических систем, задаваемый набором квазитождеств.
Всякое многообразие алгебраических систем является квазимногообразием вследствие того, что всякое тождество (из квазиатомарной формулы) можно представить, например, квазитождеством [2].
Если квазимногообразие конечно аксиоматизируемо, то оно конечно определимо[3].
Единичная алгебраическая система для заданной сигнатуры , то есть система с носителем из одного элемента , при которой и , является квазимногообразием (и, более того, многообразием). Наименьшее квазимногообразие заданной сигнатуры является многообразием, задаётся тождествами и и состоит из единственной единичной системы. Наибольшее квазимногообразие заднной сигнатуры также является многообразием — классом всех систем заданной сигнатуры, задаваемым тождеством .[4]
Всякое квазимногообразие включает произвольное фильтрованное произведение входящих в него систем[5].
Чтобы класс систем являлся квазимногообразием необходимо и достаточно, чтобы он был одновременно локально замкнут, мультипликативно замкнут (содержал любое декартово произведение своих систем) и содержал единичную систему. Локальная и мультипликативная замкнутость для этого признака могут быть эквивалентно заменены на замкнутость относительно фильтрованных произведений и наследственность[6].
Этот раздел статьи ещё не написан. |
Этот раздел статьи ещё не написан. |
Этот раздел не завершён. |
Первым результатом применения квазитождеств в общей алгебре считается результат Анатолия Мальцева 1939 года[7], в котором построена бесконечная серия квазитождеств, характеризующая класс вложимых в группы полугрупп. В работе 1943 года Чена Маккинси[en][8] связал с квазитождествами некоторые алгоритмические проблемы алгебры, а одним из результатов решения Робертом Дилуорсом[en] в 1945 году[9] задачи о существовании недистрибутивных решёток с единственным дополнением, стало доказательство факта, что квазимногообразия имеют свободные системы.
Теорема Новикова (1955) о неразрешимости проблемы равенства слов в группах фактически означает неразрешимость хорновой теории групп, то есть также может быть отнесена к результатам, относящимся к квазимногообразниям.
Становление теории квазимногообразий как самостоятельной ветви универсальной алгебры относится к работам Мальцева, Табаты и Фудзивары конца 1950-х — начала 1960-х годов. Доклад Мальцева на Международном конгрессе математиков 1966 года в Москве, в котором были сформулированы некоторые важные проблемы, относящиеся к квазимногообразиям, способствовал росту интереса математиков к этой ветви[10].
Особый всплеск интереса к теории квазимногообразий проявился в 1970-е годы, когда началось широкое применение хорновой логики в логическом программировании (прежде всего, в работах, связанных с языком программирования Пролог) и в теории баз данных.
Этот раздел не завершён. |
Данная страница на сайте WikiSort.ru содержит текст со страницы сайта "Википедия".
Если Вы хотите её отредактировать, то можете сделать это на странице редактирования в Википедии.
Если сделанные Вами правки не будут кем-нибудь удалены, то через несколько дней они появятся на сайте WikiSort.ru .