WikiSort.ru - Не сортированное

ПОИСК ПО САЙТУ | о проекте

Задача о покрытии полосками — классическая задача комбинаторной геометрии. В простейшем случае звучит так:

Доказать, что круг диаметра нельзя покрыть полосками с общей шириной меньше .

Задача о покрытии полосками известна как пример задачи, в которой при решении удобно перейти к рассмотрению высших размерностей.


О доказательстве

В трёхмерном варианте задачи вместо полосок берутся области между параллельными плоскостями. Решение этого варианта задачи легко следует из того, что площадь боковой поверхности шарового слоя зависит только от его высоты. В частности, сферу нельзя покрыть слоями с общей толщиной, меньшей диаметра сферы, а значит, нельзя и шар.

Из этого наблюдения немедленно следует двумерный случай. Это решение было предложено Гуго Штейнгаузом.

Вариации и обобщения

  • В 1932 году Тарский выдвинул гипотезу, что если выпуклую фигуру можно покрыть полосками с общей шириной 1, то её можно покрыть одной полоской ширины 1. Утвердительный ответ получен Тёгером Бангом в 1951 году.[1]
  • Следующий вариант задачи про относительную ширину полосок был предложен Бангом:
Предположим, выпуклое тело покрыто конечным числом полосок с ширинами , и есть ширины в соответствующих направлениях. Доказать, что

Примечания

  1. King, Jonathan L. (1994). “Three problems in search of a measure”. Amer. Math. Monthly. 101: 609—628. DOI:10.2307/2974690.

Литература

Данная страница на сайте WikiSort.ru содержит текст со страницы сайта "Википедия".

Если Вы хотите её отредактировать, то можете сделать это на странице редактирования в Википедии.

Если сделанные Вами правки не будут кем-нибудь удалены, то через несколько дней они появятся на сайте WikiSort.ru .




Текст в блоке "Читать" взят с сайта "Википедия" и доступен по лицензии Creative Commons Attribution-ShareAlike; в отдельных случаях могут действовать дополнительные условия.

Другой контент может иметь иную лицензию. Перед использованием материалов сайта WikiSort.ru внимательно изучите правила лицензирования конкретных элементов наполнения сайта.

2019-2025
WikiSort.ru - проект по пересортировке и дополнению контента Википедии