Асимптотическая формула Вейля связывает объём риманова многообразия с асимптотическим поведением собственных значений его лапласиана.
Соотношение было получено Германом Вейлем в 1911 году. Изначально оно формулировалось только для областей евклидова пространства. В 1912 году он представил новое доказательство на основе вариационных методов.[1]
Пусть — -мерное риманово многообразие. Обозначим через число собственных значений (с учётом кратности), не превосходящих , для задачи Дирихле на . Тогда
где обозначает объем единичного шара в -мерном евклидовом пространстве.[2]
Оценка на остаточный член была многократно улучшена.
Предположительно, следующий член в асимптотике при пропорционален площади границы . С учётом этого члена, оценка на остаточный член должна быть . В частности, при условии отсутствия границы оценка на остаточный член в формуле выше должна быть .
Данная страница на сайте WikiSort.ru содержит текст со страницы сайта "Википедия".
Если Вы хотите её отредактировать, то можете сделать это на странице редактирования в Википедии.
Если сделанные Вами правки не будут кем-нибудь удалены, то через несколько дней они появятся на сайте WikiSort.ru .