WikiSort.ru - Не сортированное

ПОИСК ПО САЙТУ | о проекте

Арифметико-геометрическая прогрессия — последовательность чисел , задаваемая рекуррентным соотношением , где и  — константы[1]. Частными случаями арифметико-геометрической прогрессии являются арифметическая прогрессия (при ) и геометрическая прогрессия (при ).

Формула для общего члена

Рассмотрим исходное соотношение: при

Пусть в этом соотношении и . Прибавив к обеим частям выражение , получаем

Перемножив указанные равенства и сократив одинаковые сомножители (или подставив вместо скобок в правой части левую часть следующего по порядку уравнения), получим явную формулу члена арифметико-геометрической прогрессии:

Свойства

  • Арифметико-геометрическая прогрессия является возвратной последовательностью второго порядка и задаётся уравнением:
  • Разность арифметико-геометрической прогрессии определяется по формуле
  • Последовательность является геометрической прогрессией с тем же знаменателем .
  • Последовательность частичных сумм членов арифметико-геометрической прогрессии является возвратной последовательностью третьего порядка и задаётся уравнением:
  • Если последовательность частичных сумм является арифметико-геометрической прогрессией, то сама последовательность является геометрической прогрессией.

Примечания

  1. Суконник Я. Н. Арифметико-геометрическая прогрессия // Квант. — 1975. — № 1. — С. 36—39.

Данная страница на сайте WikiSort.ru содержит текст со страницы сайта "Википедия".

Если Вы хотите её отредактировать, то можете сделать это на странице редактирования в Википедии.

Если сделанные Вами правки не будут кем-нибудь удалены, то через несколько дней они появятся на сайте WikiSort.ru .




Текст в блоке "Читать" взят с сайта "Википедия" и доступен по лицензии Creative Commons Attribution-ShareAlike; в отдельных случаях могут действовать дополнительные условия.

Другой контент может иметь иную лицензию. Перед использованием материалов сайта WikiSort.ru внимательно изучите правила лицензирования конкретных элементов наполнения сайта.

2019-2025
WikiSort.ru - проект по пересортировке и дополнению контента Википедии