Аннули́рующий многочле́н для ма́трицы — многочлен, значение которого для данной квадратной матрицы равно нулевой матрице. Теорема Гамильтона-Кэли утверждает, что значение характеристического многочлена для квадратной матрицы равно нулевой матрице, а значит для каждой квадратной матрицы существует, по крайней мере, один аннулирующий многочлен степени, совпадающей с порядком матрицы.
Аннули́рующий многочле́н для ве́ктора — многочлен, значение которого для данной квадратной матрицы и данного вектора равно нулевому вектору. Иными словами, многочлен является аннулирующим для матрицы и вектора , если . По определению ядра, это то же самое, что .
Для улучшения этой статьи по математике желательно: |
Данная страница на сайте WikiSort.ru содержит текст со страницы сайта "Википедия".
Если Вы хотите её отредактировать, то можете сделать это на странице редактирования в Википедии.
Если сделанные Вами правки не будут кем-нибудь удалены, то через несколько дней они появятся на сайте WikiSort.ru .