Q-критерий Кохрена (англ. Cochran's Q test) — непараметрический статистический тест, используемый для проверки того, оказывают ли два или более воздействий одинаковый эффект на группы. При этом отклик группы может принимать только 2 возможных значения (обозначаемых как 0 и 1)[1][2][3][4]. Критерий получил название по имени Уильяма Кохрена. Не следует путать Q-критерий Кохрена с G-критерием Кохрена. При использовании Q-критерия предполагается, что результат воздействия описывается только двумя типами (например, успех/неудача, 1/0) и существуют более чем 2 группы одинакового размера. Критерий определяет, является ли доля успеха одинаковой в разных группах. Часто он используется для определения того, получают ли разные наблюдатели одного и того же явления схожий результат (вариабельность субъективной экспертной оценки)[5].
Предполагается, что имеют место k > 2 экспериментальных воздействий и что наблюдения сгруппированы в b блоков
Воздействие 1 | Воздействие 2 | Воздействие k | ||
---|---|---|---|---|
Блок 1 | X11 | X12 | X1k | |
Блок 2 | X21 | X22 | X2k | |
Блок 3 | X31 | X32 | X3k | |
Группа b | Xb1 | Xb2 | Xbk |
Q-критерий Кохрена:
Статистика Q-критерия Кохрена:
where
Для уровня значимости α, критическая область:
где Χ21 − α,k − 1 — (1 − α)-квантиль распределения хи-квадрат с k − 1 степенями свободы. Нулевая гипотеза отклоняется, если статистика находится в критической области. Если по Q-критерию отвергается нулевая гипотеза об одинаковом эффекте воздействий, могут быть осуществлены попарные множественные сравнения с применением Q-критерия Кохрена для оценки двух интересующих воздействий.
Примерное распределение статистики T может быть рассчитано для малого количества исследуемых объектов. Это позволяет примерно оценить критическую область. Первый алгоритм был предложен в 1975 году Патилем[6], второй — Фами и Белетуалем[7] в 2017 году.
Q-критерий Кохрена применим при применении следующих допущений:
Для улучшения этой статьи желательно: |
Данная страница на сайте WikiSort.ru содержит текст со страницы сайта "Википедия".
Если Вы хотите её отредактировать, то можете сделать это на странице редактирования в Википедии.
Если сделанные Вами правки не будут кем-нибудь удалены, то через несколько дней они появятся на сайте WikiSort.ru .