WikiSort.ru - Не сортированное

ПОИСК ПО САЙТУ | о проекте

APX (от англ. «approximable») в теории вычислительной сложности — это класс NP-трудных задач, для которых существуют аппроксимационные алгоритмы полиномиальной сложности с постоянным коэффициентом аппроксимации. В более простых терминах, задачи этого класса имеют эффективные алгоритмы, находящие решения, которые хуже оптимального не более чем на фиксированный процент. Например, существует алгоритм полиномиальной сложности для решения задачи об упаковке в контейнеры, который использует не более чем на 5 % больше контейнеров, чем наименьшее необходимое их число.

Аппроксимационный алгоритм называется алгоритмом c-аппроксимации с некоторой константой c, если можно доказать, что решение, полученное с помощью этого алгоритма, хуже оптимального не более чем в c раз[1].

Константа c называется коэффициентом аппроксимации. В зависимости от того, является ли проблема проблемой максимизации или минимизации, решение может быть в c раз больше или в c раз меньше оптимального.

К примеру, и задача о вершинном покрытии, и задача коммивояжёра с неравенством треугольника имеют простые алгоритмы, для которых c = 2[2]. С другой стороны, доказано, что задачу коммивояжёра с произвольными длинами рёбер (не обязательно удовлетворяющими неравенству треугольника) нельзя аппроксимировать с постоянным коэффициентом, поскольку задачу поиска гамильтонова пути нельзя решить за полиномиальное время (в случае, если P ≠ NP)[3].

Если существует алгоритм решения задачи за полиномиальное время для любого фиксированного коэффициента большего единицы (один алгоритм для любого коэффициента), говорят, что задача имеет полиномиальную по времени схему аппроксимации (PTAS). Если P ≠ NP, можно показать, что существуют задачи, входящие в класс APX, но не в PTAS, то есть задачи, которые можно аппроксимировать с некоторым коэффициентом, но не с любым коэффициентом.

Задача называется APX-трудной, если любая задача из класса APX имеет сведение к этой задаче, и APX-полной, если задача APX-трудна и сама принадлежит к классу APX[1]. Из неравенства P ≠ NP следует, что PTASAPX, P ≠ NP, а отсюда никакая APX-трудная задача не принадлежит PTAS.

Если задача APX-трудна, это обычно плохо, поскольку при P ≠ NP это означает отсутствие PTAS-алгоритма, который является наиболее полезным видом аппроксимационного алгоритма. Одна из наиболее простых APX-полных задач — это задача максимальной выполнимости булевых формул[en], вариант задачи выполнимости булевых формул. В этой задаче мы имеем булеву формулу в конъюнктивной нормальной форме, и хотим получить максимальное число подвыражений, которые будут выполняться при единственной подстановке значений true/false в переменные. Несмотря на то, что, скорее всего, задача не принадлежит PTAS, верное значение может быть получено с точностью 30 %, а некоторые упрощённые варианты задачи имеют PTAS[4][5][6].

Примеры

Примечания

  1. 1 2 Tjark Vredeveld. Combinatorial approximation algorithms : guaranteed versus experimental performance. — Technische Universiteit Eindhoven, 2002. — P. 4,12. ISBN 90-386-0532-3.
  2. by Dorit S. Hochbaum. Approximation algorithms for NP-hard problems. — PWS Publishing Company, 1995. — P. 94-144. ISBN 0-534-94968-1.
  3. Sanjeev Arora. The Approximability of NP-hard Problems. — Princeton University.
  4. MICHEL X. GOEMANS, DAVID P. WILLIAMSON. NEW 3/4-APPROXIMATION ALGORITHMS FOR THE MAXIMUM SATISFIABILITY PROBLEM // SIAM J. DISC. MATH.. — 1994. Т. 7, вып. 4. С. 656-666.
  5. MICHEL X. GOEMANS, DAVID P. WILLIAMSON. Improved Approximation Algorithms for Maximum Cut and Satisfiability Problems Using Semidefinite // Journal of the Association for Computins Machinery. — 1995. Т. 42, вып. 6. С. 1115-1145.
  6. Miguel F. Anjos. Semidefinite Optimization Approaches for Satisfability and Maximum-Satisfability Problems // Journal on Satisfiability, Boolean Modeling and Computation. — 2005. Т. 1. С. 1-47.

Ссылки

  • C. Papadimitriou and M. Yannakakis. Optimization, approximation and complexity classes. Journal of Computer and System Sciences, 43:425-440, 1991.
  • Pierluigi Crescenzi, Viggo Kann, Magnús Halldórsson, Marek Karpinski and Gerhard Woeginger. Maximum Satisfiability. A compendium of NP optimization problems. Last updated March 20, 2000.

Данная страница на сайте WikiSort.ru содержит текст со страницы сайта "Википедия".

Если Вы хотите её отредактировать, то можете сделать это на странице редактирования в Википедии.

Если сделанные Вами правки не будут кем-нибудь удалены, то через несколько дней они появятся на сайте WikiSort.ru .




Текст в блоке "Читать" взят с сайта "Википедия" и доступен по лицензии Creative Commons Attribution-ShareAlike; в отдельных случаях могут действовать дополнительные условия.

Другой контент может иметь иную лицензию. Перед использованием материалов сайта WikiSort.ru внимательно изучите правила лицензирования конкретных элементов наполнения сайта.

2019-2025
WikiSort.ru - проект по пересортировке и дополнению контента Википедии