WikiSort.ru - Не сортированное

ПОИСК ПО САЙТУ | о проекте
Рисунок 1 — Эквивалентная схема для цепи Чуа состоящая из линейных пассивных элементов: катушки индуктивности (L), проводника (G) и двух конденсаторов (C1, C2), а g — нелинейный элемент называемый диодом Чуа. В классическом варианте предлагаются следующие значения элементов: L = 1/7 Гн; G = 0,7 См; C1 = 1/9 Ф; C2 = 1 Ф.

Цепь Чуа или схема Чуа — простейшая электрическая цепь, демонстрирующая режимы хаотических колебаний. Была предложена профессором Калифорнийского университета Леоном Чуа[en] в 1983 году. Цепь состоит из двух конденсаторов, одной катушки индуктивности, линейного резистора и нелинейного резистора с отрицательным сопротивлением (обычно называемого диодом Чуа).

Математическая модель

Систему уравнений для цепи изображённой на рисунке 1 можно получить используя первое правило Кирхгофа и формулу для напряжения на катушке индуктивности:

где и — напряжения на ёмкостях, — ток через катушку идуктивности,  — кусочно-линейная функция характеризующая диод Чуа, определенная как

Рисунок 2. Вольт-амперная характеристика диода Чуа. Также показана нагрузочная прямая, от пересечения с которой образуются три точки равновесия d, 0 и −d

Эта нелинейная функция представлена графически на рисунке 2: крутизна внутреннего и внешнего участков есть Ga и Gb соответственно; при этом точки ±Е соответствуют изломам на графике.

Выполним следующие замены на безразмерные коэффициенты:

Основная система уравнений запишется в виде

где

Режимы работы

Цепь Чуа обнаруживает хаотические режимы колебаний в довольно узкой области параметров. Основные режимы колебаний условно показаны на рисунке 3.

Рисунок 3. Бифуркационная диаграмма режимов при m0 = −8/7, m1 = −5/7

В случае, когда параметры α и β принадлежат области, обозначенной на диаграмме цифрой 1, в системе существуют два устойчивых положения равновесия d и −d и одно неустойчивое, находящееся в начале координат 0. В этом случае цепь Чуа в зависимости от начальных условий будет стремиться к одному из двух устойчивых положений равновесия. В случае, когда параметры системы находятся в области помеченной цифрой 2, в окрестности точки равновесия d или −d существует устойчивый предельный цикл. По мере приближения к границе с хаотическим режимом система претерпевает цикл удвоений периода вплоть до образования хаотического аттрактора Рёсслера. Приращение значений параметра перед наступлением каждой последующей бифуркации удвоения периода уменьшается согласно соотношению Фейгенбаума. При попадании параметров в область, помеченную цифрой 6, образуется странный аттрактор (рисунок 4), называемый «двойной завиток» (англ. double scroll). При этом типе поведения траектория система проходит в окрестности и верхнего, и нижнего положения равновесия. Внутри области существования аттрактора «двойной завиток» также существуют окна периодичности, подобные тем, которые существовали в области аттрактора Рёсслера. Отличием их является то, что периодическая орбита в этом случае охватывает оба положения равновесия. Когда параметры α и β переходят в область, помеченную на рисунке 3 цифрой 11, в колебательной системе наблюдаются колебания неограниченно нарастающей амплитуды вне зависимости от начальных условий. Поскольку диод Чуа реализуется на операционных усилителях, он имеет ограниченный динамический диапазон, и поэтому в системе существует также большой по размерам устойчивый предельный цикл, охватывающий все сегменты характеристики диода Чуа.

На рисунках 5, 6 показаны временные зависимости колебаний, обнаруживаемых данной системой.

Осциллятор Чуа

Термин «Осциллятор Чуа» используется для рассмотрения цепи Чуа с учётом активного сопротивления катушки индуктивности L. Данная схема имеет ещё большее число разнообразных режимов и может быть реализована практически (рисунок 7).

Рисунок 7. Практическая схема осциллятора Чуа. L1 = 8,5 мГн, C1 = 4,8 нФ, C2 = 69 нФ, R = 1,3 кОм

Принимая R0 — активное сопротивление катушки индуктивности L, получим систему уравнений

Лёгкость практической реализации, а также наличие относительно простой математической модели делает цепь Чуа удобной моделью для изучения хаоса.

См. также

Мемристор

Литература

Ссылки

Данная страница на сайте WikiSort.ru содержит текст со страницы сайта "Википедия".

Если Вы хотите её отредактировать, то можете сделать это на странице редактирования в Википедии.

Если сделанные Вами правки не будут кем-нибудь удалены, то через несколько дней они появятся на сайте WikiSort.ru .




Текст в блоке "Читать" взят с сайта "Википедия" и доступен по лицензии Creative Commons Attribution-ShareAlike; в отдельных случаях могут действовать дополнительные условия.

Другой контент может иметь иную лицензию. Перед использованием материалов сайта WikiSort.ru внимательно изучите правила лицензирования конкретных элементов наполнения сайта.

2019-2025
WikiSort.ru - проект по пересортировке и дополнению контента Википедии