WikiSort.ru - Не сортированное

ПОИСК ПО САЙТУ | о проекте

Характеристическая кривая задания (ХКЗ) - это график функции, который показывает вероятность выполнения определенного задания теста людьми с разными уровнями способностей.

Необходимость ХКЗ

Зачастую при тестовой оценке способностей используется метод общей оценки. Однако возникает проблема: при таком подходе не учитывается сложность заданий (т.е. способности индивида, решившего 3 сложных задания и того, который решил 3 простых задания, оцениваются как равные). В связи с этим возникает необходимость использования норм.

Например, можно использовать уровень трудности ("p-значения", т.е. пропорция испытуемых, выполняющих задания) наиболее сложных правильно решенных заданий как показатель способностей. Также можно вычислить среднюю сложность правильно решенных заданий. Однако проблема остается: слишком уж много разных показателей можно создать на основе "p-значений", и становится не ясно, какой именно показатель следует использовать для оценки способностей.

Один из возможных подходов к разрешению этой проблемы состоит в применении имеющейся математической модели, описывающей результаты выполнения человеком теста.

Допущения, необходимые для построения ХКЗ

  • вероятность верного выполнения индивидуумом задания зависит от способностей конкретного человека и от степени сложности тестового задания.
  • "локальная независимость" (верное выполнение конкретного задания не зависит от успешности человека в выполнении других заданий, т.к. вероятность верного выполнения задания - функция способностей человека). Таким образом, каждое задание должно представлять собой новую проблему, не зависящую от предыдущих.
  • все задания шкалы оценивают один конструкт
  • вероятность того, что индивид с крайне низким уровнем способностей решит задание умеренной сложности, стремится к нулю
  • вероятность того, что индивид с очень высоким уровнем способностей решит задание умеренной сложности, стремится к единице
  • уровень трудности задания - это точка на кривой, в которой индивид верно решит задание с вероятностью в 50%
  • по обе стороны от этой точки есть диапазон способностей, где вероятность верного решения индивидо задания непрерывно изменяется от 0 до 1.

Так, ХКЗ будет выглядеть следующим образом:

Этот график отображает вероятность верного решения задания людьми с разным уровнем способностей. На этом рисунке представлена "однопараметрическая модель" ХКЗ, так как она отображает только параметр сложности задания. Это график "логистической функции", который можно описать математически:

,

где - вероятность того, что человек решит задание i правильно при условии, что он имеет уровень способностей, равный φ; e=2,718; φ - способности личности; bi - уровень трудности задания i.

Двухпараметрическая логистическая модель

В двухпараметрической ХКЗ учитываются сразу два параметра: показатели дискриминации (a) и трудности (b). Показатель дискриминации - показатель "рассеивания" значений по оси ОХ.

.

Трехпараметрическая логистическая модель

Здесь принимается в расчет также и вероятность угадывания (при наличии вариантов ответа задании).

,

где ci - вероятность, с которой индивид с с очень низким уровнем способностей ответит на задание верно.

Применение ХКЗ

Все три математические модели (ХКЗ) описывают связи между способностями человека и вероятностью его успешности при решении конкретных тестовых заданий. Т.е. имея информацию об уровне способностей индивида и параметрах задания, мы можем установить вероятность верного решения задания конкретным человеком. Данный подход используется в теории сложности заданийй, где реализуется обратная логика: получив ответы человека на тестовые задания, мы хотим установить вероятные значения параметров каждого задания и уровень способностей каждого индивида.

Литература

  • Колин Купер "Индивидуальные различия", М. 2000, изд. "Аспент пресс"

Данная страница на сайте WikiSort.ru содержит текст со страницы сайта "Википедия".

Если Вы хотите её отредактировать, то можете сделать это на странице редактирования в Википедии.

Если сделанные Вами правки не будут кем-нибудь удалены, то через несколько дней они появятся на сайте WikiSort.ru .




Текст в блоке "Читать" взят с сайта "Википедия" и доступен по лицензии Creative Commons Attribution-ShareAlike; в отдельных случаях могут действовать дополнительные условия.

Другой контент может иметь иную лицензию. Перед использованием материалов сайта WikiSort.ru внимательно изучите правила лицензирования конкретных элементов наполнения сайта.

2019-2025
WikiSort.ru - проект по пересортировке и дополнению контента Википедии