Функциональная отделимость — свойство пары подмножеств топологического пространства.
Два подмножества и в данном топологическом пространстве называются функционально отделимыми в , если существует такая определенная во всём пространстве вещественная ограниченная непрерывная функция , которая принимает во всех точках множества одно значение , a во всех точках множества ― некоторое отличное от значение . При этом всегда можно предположить, что во всех точках .
Пространство, в котором всякая точка функционально отделима от всякого не содержащего её замкнутого множества, называется вполне регулярным.
Для улучшения этой статьи по математике желательно: |
Данная страница на сайте WikiSort.ru содержит текст со страницы сайта "Википедия".
Если Вы хотите её отредактировать, то можете сделать это на странице редактирования в Википедии.
Если сделанные Вами правки не будут кем-нибудь удалены, то через несколько дней они появятся на сайте WikiSort.ru .