Формула Бине́ — Коши́ — теорема об определителе произведения двух прямоугольных матриц, при условии, что оно является квадратной матрицей. Доказана в начале XIX века французскими математиками Ж. Бине и О. Коши.
Произведение двух прямоугольных матриц и дает квадратную матрицу порядка , если имеет столбцов и строк, а матрица имеет столбцов и строк. Миноры матриц и одинакового порядка, равного наименьшему из чисел и , называются соответствующими друг другу, если они стоят в столбцах (матрицы ) и строках (матрицы ) с одинаковыми номерами.
Определитель матрицы равен нулю, если , и равен сумме попарных произведений соответствующих друг другу миноров порядка , если (сумма берется по всем наборам столбцов матрицы и строк матрицы с возрастающими номерами )[1].
Пусть
Тогда
и соответствующие миноры имеют вид
при всех , принимающих значения от до .
Формула Бине — Коши в этом случае дает равенство
из которого (в случае, когда все и являются вещественными числами) вытекает неравенство Коши — Буняковского[1]:
Данная страница на сайте WikiSort.ru содержит текст со страницы сайта "Википедия".
Если Вы хотите её отредактировать, то можете сделать это на странице редактирования в Википедии.
Если сделанные Вами правки не будут кем-нибудь удалены, то через несколько дней они появятся на сайте WikiSort.ru .