Теорема о шести окружностях — теорема в геометрии треугольника.
Рассмотрим цепь из окружностей, каждая из которых касается двух сторон данного треугольника, а также предыдущей окружности в цепи. Тогда эта цепь замыкается, в том смысле, что шестая окружность касается первой[1].
Проведя цепочку из шести черных окружностей (см. рис. справа), каждая из которых касается седьмой окружности (красная), и каждая из которых касается двух соседних окружностей, три линии (синие), проведенные между противоположными парами точек касания с седьмой окружностью, пересекаются в одной точке (зеленая). Хотя элементарная по сути эта теорема не была известна вплоть до 1974 года [2],[3].
Если радиусы трёх окружностей приблизятся к бесконечности, три окружности превратятся в прямые линии — в стороны треугольника, а центральная окружность — во вписанную окружность этого треугольника. Тогда три линии, соединяющие противоположные точки касания (точки касания со сторонами образованного треугольника с соответствующими противоположными им вершинами треугольника), также пересекутся в одной точке (как чевианы треугольника). Это соответствует последнему рисунку справа внизу, где, кстати, видны и три указанные чевианы, пересекающиеся в одной точке.
Данная страница на сайте WikiSort.ru содержит текст со страницы сайта "Википедия".
Если Вы хотите её отредактировать, то можете сделать это на странице редактирования в Википедии.
Если сделанные Вами правки не будут кем-нибудь удалены, то через несколько дней они появятся на сайте WikiSort.ru .