Теорема Громова о группах полиномиального роста утверждает, что все конечнопорождённые группы полиномиального роста почти нильпотентны, то есть, обладают нильпотентной подгруппой конечного индекса.
Доказана Громовым в 1981[1]. В этой статье впервые появляется так называемая сходимость по Громову — Хаусдорфу. Доказательство существенно использует так называемую альтернативу Титса.
Для улучшения этой статьи желательно: |
Данная страница на сайте WikiSort.ru содержит текст со страницы сайта "Википедия".
Если Вы хотите её отредактировать, то можете сделать это на странице редактирования в Википедии.
Если сделанные Вами правки не будут кем-нибудь удалены, то через несколько дней они появятся на сайте WikiSort.ru .