WikiSort.ru - Не сортированное

ПОИСК ПО САЙТУ | о проекте
Четыре метода суммирования по Риману для аппроксимации области, расположенной между кривой и осью абсцисс. Аппроксимация правым и левым методами производится с использованием правых и левых предельных точек на каждом подынтервале соответственно. Методы максимума и минимума осуществляют аппроксимацию с использованием наибольшего и наименьшего значений предельных точек на каждом подынтервале соответственно.

Сумма Римана — один из механизмов определения интеграла через сумму вида .

Определение

Пусть является функцией определённой на подмножестве на вещественной прямой .

 — замкнутый интервал содержащийся в .

является разбиением , в котором .


Сумма Римана функции с разбиением определяется следующим образом:

где . Выбор в данном интервале является произвольным. Если для всех , тогда называется левой суммой Римана. Если , тогда называется правой суммой Римана. Если , тогда называется средней суммой Римана. Усреднённое значение левой и правой суммы Римана называется трапециевидной суммой.


Если Сумма Римана представляется в виде:

где является точной верхней границей множества на интервале , то называется верхней суммой Римана. Аналогично, если является точной нижней границей множества интервале , то называется нижней суммой Римана.


Любая сумма Римана с заданным разбиением (при выборе любого значения из интервала ) находится между нижней и верхней суммами Римана.


Если для функции и отрезка существует предел сумм Римана, когда шаг разбиения стремится к нулю (независимо от выбора ), то этот предел называют интегралом Римана функции на отрезке и обозначается .

Литература

Данная страница на сайте WikiSort.ru содержит текст со страницы сайта "Википедия".

Если Вы хотите её отредактировать, то можете сделать это на странице редактирования в Википедии.

Если сделанные Вами правки не будут кем-нибудь удалены, то через несколько дней они появятся на сайте WikiSort.ru .




Текст в блоке "Читать" взят с сайта "Википедия" и доступен по лицензии Creative Commons Attribution-ShareAlike; в отдельных случаях могут действовать дополнительные условия.

Другой контент может иметь иную лицензию. Перед использованием материалов сайта WikiSort.ru внимательно изучите правила лицензирования конкретных элементов наполнения сайта.

2019-2025
WikiSort.ru - проект по пересортировке и дополнению контента Википедии