WikiSort.ru - Не сортированное

ПОИСК ПО САЙТУ | о проекте
Скрученный узел с шестью полуоборотами.

В теории узлов скрученный узел[1] — это узел, полученный в результате перекручивания замкнутой петли с последующим зацеплением концов (таким образом, скрученный узел — это любое двойное зацепление Уайтхеда[en] тривиального узла). Скрученные узлы являются бесконечным семейством узлов и считаются простейшим типом узлов после торических узлов.

Построение

Скрученный узел получается путём зацепления двух концов скрученной петли. Любое число полуоборотов может быть сделано до зацепления, что даёт бесконечное семейство. Следующие фигуры показывают несколько первых скрученных узлов:

Свойства

Узел грузчика в четыре полуоборота образуется путём (само-)зацепления одного конца петли, скрученной в два оборота, с другим концом петли.

Все скрученные узлы имеют число распутывания[en] единица, поскольку узел можно развязать, разъединив два конца. Любой скрученный узел является также двухмостиковым[en][2]. Из всех скрученных узлов только тривиальный узел и узел грузчика[en] являются срезанными[3]. Скрученный узел c полуоборотами имеет число пересечений . Все скрученные узлы являются обратимыми, но ахиральными скрученными узлами являются только тривиальный узел и восьмёрка.

Инварианты

Инварианты скрученных узлов зависят от числа полуоборотов. Многочлен Александера скрученного узла задаётся формулой

для чётных n,
для нечётных n,

а многочлен Конвея равен

для чётных n,
для нечётных n.

Если нечётно, многочлен Джонса равен

при чётном же

Примечания

  1. встречается также название твист узел
  2. Rolfsen, 2003, с. 114.
  3. Weisstein, Eric W. Twist Knot (англ.) на сайте Wolfram MathWorld.

Литература

  • Dale Rolfsen. Knots and links. — Providence, R. I.: AMS Chelsea Pub, 2003. ISBN 0-8218-3436-3.

Данная страница на сайте WikiSort.ru содержит текст со страницы сайта "Википедия".

Если Вы хотите её отредактировать, то можете сделать это на странице редактирования в Википедии.

Если сделанные Вами правки не будут кем-нибудь удалены, то через несколько дней они появятся на сайте WikiSort.ru .




Текст в блоке "Читать" взят с сайта "Википедия" и доступен по лицензии Creative Commons Attribution-ShareAlike; в отдельных случаях могут действовать дополнительные условия.

Другой контент может иметь иную лицензию. Перед использованием материалов сайта WikiSort.ru внимательно изучите правила лицензирования конкретных элементов наполнения сайта.

2019-2025
WikiSort.ru - проект по пересортировке и дополнению контента Википедии