В теории чисел псевдопростым числом Фробениуса называется псевдопростое число, прошедшее трехшаговый тест принадлежности к вероятно простым числам, разработанный Джоном Грантамом (Jon Grantham) в 1996 году.[1][2]
Псевдопростые числа Фробениуса определяются по отношению к заданному многочлену. Для отдельных типов многочленов псевдопростые Фробениуса связаны с другими типами псевдопростых чисел.
Псевдопростые числа Фробениуса относительно полинома образуют последовательность:
Хотя единичный проход теста Фробениуса медленнее единичного прохода большинства других тестов псевдопростоты, он имеет меньшую наихудшую вероятность ошибки ,[1], которую можно получить только семью проходами теста простоты Миллера-Рабина.
Псевдопростое число называется сильным псевдопростым Фробениуса, если оно удовлетворяет дополнительным ограничениям.[3]
Для улучшения этой статьи желательно: |
Данная страница на сайте WikiSort.ru содержит текст со страницы сайта "Википедия".
Если Вы хотите её отредактировать, то можете сделать это на странице редактирования в Википедии.
Если сделанные Вами правки не будут кем-нибудь удалены, то через несколько дней они появятся на сайте WikiSort.ru .