WikiSort.ru - Не сортированное

ПОИСК ПО САЙТУ | о проекте

Пространство Фреше — полное локально выпуклое пространство, топология которого может быть задана метрикой. Названо в честь Мориса Фреше.

Частными случаями пространств Фреше являются банаховы пространства. Пространства Фреше сохраняют ряд важных свойств банаховых пространств, и это делает их удобными моделями локально выпуклых пространств в математике. В частности, в классе пространств Фреше справедливы

Все пространства Фреше стереотипны. В теории стереотипных пространств двойственными объектами к пространствам Фреше являются пространства Браунера.

Примеры

  • Всякое банахово пространство является пространством Фреше.
  • Если  — вещественное гладкое многообразие, то пространство гладких функций на с топологией равномерной сходимости на каждом компакте по каждой производной является пространством Фреше.
  • Если  — комплексное многообразие, то пространство голоморфных функций на с топологией равномерной сходимости на каждом компакте является пространством Фреше.

Литература

  • Шефер, Х. Топологические векторные пространства. — Москва : Мир, 1971.
  • Робертсон А.П., Робертсон, В.Дж. Топологические векторные пространства. — Москва : Мир, 1967.
  • Рудин, У. Функциональный анализ. — Москва : Мир, 1975.

Данная страница на сайте WikiSort.ru содержит текст со страницы сайта "Википедия".

Если Вы хотите её отредактировать, то можете сделать это на странице редактирования в Википедии.

Если сделанные Вами правки не будут кем-нибудь удалены, то через несколько дней они появятся на сайте WikiSort.ru .




Текст в блоке "Читать" взят с сайта "Википедия" и доступен по лицензии Creative Commons Attribution-ShareAlike; в отдельных случаях могут действовать дополнительные условия.

Другой контент может иметь иную лицензию. Перед использованием материалов сайта WikiSort.ru внимательно изучите правила лицензирования конкретных элементов наполнения сайта.

2019-2025
WikiSort.ru - проект по пересортировке и дополнению контента Википедии