WikiSort.ru - Не сортированное

ПОИСК ПО САЙТУ | о проекте

Локально выпуклое пространстволинейное топологическое пространство с системой полунорм, удовлетворяющей некоторым условиям.

Определение

Линейное топологическое пространство называется локально выпуклым пространством, если существует семейство полунорм на , удовлетворяющее двум условиям:

  • Если для каждого , то .
  • Если для произвольной точки пространства , любой конечной системы полунорм из и любой конечной системы положительных вещественных чисел рассмотреть (выпуклые) множества, состоящие из элементов , удовлетворяющих условию с , то все такие множества образует базис топологии в [1].

Свойства

  • Локально выпуклые пространства хаусдорфовы.
  • Последовательность точек локально выпуклого пространства сходится к в том и только том случае, если для каждой полунормы выполняется соотношение .

Примечания

Литература

  • Гаевский Х., Грёгер К., Захариас К. Нелинейные операторные уравнения и операторные дифференциальные уравнения. М.: Мир, 1978. — 336 с.

Данная страница на сайте WikiSort.ru содержит текст со страницы сайта "Википедия".

Если Вы хотите её отредактировать, то можете сделать это на странице редактирования в Википедии.

Если сделанные Вами правки не будут кем-нибудь удалены, то через несколько дней они появятся на сайте WikiSort.ru .




Текст в блоке "Читать" взят с сайта "Википедия" и доступен по лицензии Creative Commons Attribution-ShareAlike; в отдельных случаях могут действовать дополнительные условия.

Другой контент может иметь иную лицензию. Перед использованием материалов сайта WikiSort.ru внимательно изучите правила лицензирования конкретных элементов наполнения сайта.

2019-2025
WikiSort.ru - проект по пересортировке и дополнению контента Википедии