Подстановки Эйлера — подстановки, приводящие интегралы вида , где — рациональная функция, к интегралам от рациональных функций. Предложены Л. Эйлером в 1768 году[1][2].
Используется тогда, когда
. Производится замена:
Используется тогда, когда
. Производится замена:
Используется тогда, когда подкоренное выражение имеет два действительных корня. Производится замена:
, где
— один из корней[1].
По воспоминаниям ученика Ландау А. И. Ахиезера, тот крайне негативно относился к использованию данных подстановок:
<…> он [Ландау] предложил мне вычислить <…> интеграл от рациональной дроби. <…> я вычислил, не используя стандартных подстановок Эйлера, и это меня спасло, ибо, как я понял впоследствии, Ландау не терпел их и считал, что каждый раз нужно использовать какой-нибудь искусственный прием, что собственно, я и сделал.
— Воспоминания о Л. Д. Ландау[3]
![]() |
Это заготовка статьи по математике. Вы можете помочь проекту, дополнив её. |
Для улучшения этой статьи по математике желательно: |
Данная страница на сайте WikiSort.ru содержит текст со страницы сайта "Википедия".
Если Вы хотите её отредактировать, то можете сделать это на странице редактирования в Википедии.
Если сделанные Вами правки не будут кем-нибудь удалены, то через несколько дней они появятся на сайте WikiSort.ru .