WikiSort.ru - Не сортированное

ПОИСК ПО САЙТУ | о проекте

В теории динамических систем, перемешивание — свойство системы «забывать» информацию о начальном условии с течением времени. Более точно, различают топологическое и метрическое перемешивание. Первое относится к теории непрерывных систем и, грубо говоря, утверждает, что сколь бы точно ни было известно начальное положение точки, с течением времени возможное её местонахождение становится всё более и более плотным множеством. Второе относится к теории измеримых систем — систем, сохраняющих некоторую меру  — и утверждает, что распределение абсолютно непрерывной относительно меры (например, ограничения на заданное подмножество начальных условий) при итерациях стремится к самой мере .

Перемешивание цветного пластилина в шарике, подвергающемся последовательным отображениям Подковы Смейла

Определения

Топологическое перемешивание

По определению, (непрерывная) динамическая система называется топологически перемешивающей, если для любых двух непустых открытых множеств выполнено

или, что то же самое,

Это, в частности, означает, что для любых заданных и непустого открытого множества все итерации с достаточно большим номером оказываются -плотны в фазовом пространстве.

Топологическое перемешивание является более сильным, чем транзитивность, свойством. Так, иррациональный поворот окружности транзитивен, но не перемешивает.

Метрическое перемешивание

По определению, сохраняющее меру измеримое отображение называется метрически перемешивающим, если для любых двух измеримых множеств выполнено

В терминах интегрируемых функций, это равносильно тому, что для любых двух функций выполнено

Эргодичность меры является необходимым, но не достаточным условием метрического перемешивания. Так, иррациональный поворот окружности сохраняет эргодическую для него меру Лебега, но не является метрически перемешивающим.

См. также

Литература

  • Корнфельд И. П., Синай Я. Г., Фомин С. В., Эргодическая теория.
  • Синай Я. Г., Современные проблемы эргодической теории, М.:ФизМатЛит, 1995, с. 24.
  • Каток А. Б., Хассельблат Б. Введение в современную теорию динамических систем = Introduction to the Modern Theory of Dynamical Systems / пер. с англ. А. Кононенко при участии С. Ферлегера. М.: Факториал, 1999. — 768 с. ISBN 5-88688-042-9.

Данная страница на сайте WikiSort.ru содержит текст со страницы сайта "Википедия".

Если Вы хотите её отредактировать, то можете сделать это на странице редактирования в Википедии.

Если сделанные Вами правки не будут кем-нибудь удалены, то через несколько дней они появятся на сайте WikiSort.ru .




Текст в блоке "Читать" взят с сайта "Википедия" и доступен по лицензии Creative Commons Attribution-ShareAlike; в отдельных случаях могут действовать дополнительные условия.

Другой контент может иметь иную лицензию. Перед использованием материалов сайта WikiSort.ru внимательно изучите правила лицензирования конкретных элементов наполнения сайта.

2019-2025
WikiSort.ru - проект по пересортировке и дополнению контента Википедии