WikiSort.ru - Не сортированное

ПОИСК ПО САЙТУ | о проекте

Обратная теорема или обратное утверждение к данной теореме — это утверждение, в котором условие исходной теоремы (прямого утверждения) поставлено заключением, а заключение — условием.

Каждая теорема может быть выражена в форме импликации , в которой посылка является условием теоремы, а следствие является заключением теоремы. Тогда теорема, записанная в виде является обратной к ней[1].

Часто используется более общее определение обратной теоремы: если является прямой теоремой, то обратной называется не только теорема , но и теоремы , [2].

Вообще говоря, обратная теорема может не быть истинной, даже если прямая теорема верна. Даже если обратное утверждение истинно, то его доказательство может быть гораздо сложнее доказательства прямого. Например, теорема о четырёх вершинах была доказана в 1912 году, а её обратная только в 1998 году.

Свойства

  • Прямая теорема эквивалентна теореме, противоположной обратной:
  • Обратная теорема эквивалентна противоположной прямой: [3]

Примеры

Если в треугольнике со сторонами длиной , и угол, противолежащий стороне , прямой, то .

Обратная к этой теореме появляется в «Началах» Евклида (книга I, предложение 48), может быть сформулирована следующим образом:

Если в треугольнике со сторонами длиной , и выполняется , то угол, противолежащий стороне , прямой.

См. также

Примечания

Литература

  • Эдельман С.Л. Математическая логика. М.: Высшая школа, 1975. — 176 с.
  • Гиндикин С.Г. Алгебра логики в задачах. М.: Наука, 1972. — 288 с.

Данная страница на сайте WikiSort.ru содержит текст со страницы сайта "Википедия".

Если Вы хотите её отредактировать, то можете сделать это на странице редактирования в Википедии.

Если сделанные Вами правки не будут кем-нибудь удалены, то через несколько дней они появятся на сайте WikiSort.ru .




Текст в блоке "Читать" взят с сайта "Википедия" и доступен по лицензии Creative Commons Attribution-ShareAlike; в отдельных случаях могут действовать дополнительные условия.

Другой контент может иметь иную лицензию. Перед использованием материалов сайта WikiSort.ru внимательно изучите правила лицензирования конкретных элементов наполнения сайта.

2019-2025
WikiSort.ru - проект по пересортировке и дополнению контента Википедии