WikiSort.ru - Не сортированное

ПОИСК ПО САЙТУ | о проекте

Для любой функции , определённой на множестве , можно ввести понятие модуля непрерывности этой функции, обозначаемого . Модуль непрерывности — тоже функция, по определению равная

или верхней грани колебания функции по всем подотрезкам из длиной меньше . Также в литературе встречаются другие обозначения: и (реже) .

Свойства модуля непрерывности

Введённая функция обладает рядом интересных свойств.

  • При любом она неотрицательна.
  • Функция не убывает.
  • Функция полуаддитивна, если выпукло:
  • По определению в точке 0 модуль непрерывности равен 0:
  • Теорема о равномерной непрерывности может быть сформулирована следующим образом. Если функция определена на отрезке и непрерывна на нём, то , и наоборот. Данный предел обозначается также .
  • Если непрерывна на , то её модуль непрерывности также непрерывная функция на отрезке .

Связанные понятия

Модуль непрерывности оказался тонким инструментом исследования разнообразных свойств функции, таких как:

Вариации и обобщения

Модули непрерывности высших порядков

Нетрудно заметить, что в определении модуля непрерывности используется конечная разность первого порядка от функции .

Если вместо конечной разности первого порядка взять конечную разность порядка , то получим определение модуля непрерывности порядка . Обычное обозначение для таких модулей — .

Свойства

  • Если  — целое число, то

Неклассические модули непрерывности

Известно много разных обобщений понятия модуля непрерывности. Например, можно заменить оператор конечной разности другим разностным оператором с произвольными коэффициентами. Можно разрешить этим коэффициентам быть непостоянными и меняться в зависимости от точки, где берётся этот разностный оператор. Можно разрешить и шагу, с которым берётся разностный оператор также зависеть от точки. Подобные неклассические модули непрерывности находят своё применение в различных областях современной математики.

Ссылки

Данная страница на сайте WikiSort.ru содержит текст со страницы сайта "Википедия".

Если Вы хотите её отредактировать, то можете сделать это на странице редактирования в Википедии.

Если сделанные Вами правки не будут кем-нибудь удалены, то через несколько дней они появятся на сайте WikiSort.ru .




Текст в блоке "Читать" взят с сайта "Википедия" и доступен по лицензии Creative Commons Attribution-ShareAlike; в отдельных случаях могут действовать дополнительные условия.

Другой контент может иметь иную лицензию. Перед использованием материалов сайта WikiSort.ru внимательно изучите правила лицензирования конкретных элементов наполнения сайта.

2019-2025
WikiSort.ru - проект по пересортировке и дополнению контента Википедии