В математике, особенно в теории матриц, n×n-матрица Лемера (названа в честь Деррика Генри Лемера) это постоянная симметричная матрица определяемая как:
Эквивалентно можно записать:
Свойства
Если A n×n-матрица Лемера, а B m×m-матрица Лемера, то A является подматрицей матрицы B при m>n. Значения элементов матрицы уменьшаются при удалении от главной диагонали, элементы которой равны 1.
Интересно, что обратная к матрице Лемера матрица является трёхдиагональной, где наддиагональ и поддиагональ имеют строго отрицательные элементы. Снова рассмотрим матрицы Лемера A и B (n×n и m×m, соответственно, где m>n). Существенной особенностью их обратных является то, что A-1 отличается от подматрицы матрицы B-1 только элементом An,n, остальные же элементы равны.
След n×n-матрицы Лемера равен n.
Примеры
2×2, 3×3 и 4×4-матрицы Лемера и их обратные приведены ниже:
Ссылки
- M. Newman and J. Todd, The evaluation of matrix inversion programs, Journal of the Society for Industrial and Applied Mathematics, Volume 6, 1958, pages 466-476.
Данная страница на сайте WikiSort.ru содержит текст со страницы сайта "Википедия".
Если Вы хотите её отредактировать, то можете сделать это на странице редактирования в Википедии.
Если сделанные Вами правки не будут кем-нибудь удалены, то через несколько дней они появятся на сайте WikiSort.ru .