WikiSort.ru - Не сортированное

ПОИСК ПО САЙТУ | о проекте

В теории категорий коядро — это понятие, двойственное к ядру — ядро является подобъектом прообраза, а коядро — факторобъектом образа. Интуитивно, при поиске решения уравнения коядро определяет число ограничений, которым должен удовлетворять y, чтобы данное уравнение имело решение.

Определение

Пусть C — категория с нулевыми морфизмами. Тогда коядро морфизма f : XY — это коуравнитель его и нулевого морфизма 0 : XY. Более явно, выполняется следующее универсальное свойство:

Коядро f : XY — это морфизм q : YQ, такой что:

  • q o f — нулевой морфизм из X в Q;
  • Для любого морфизма , такого что  — нулевой существует единственный морфизм , такой что следующая диаграмма коммутативна:

Как и другие универсальные конструкции, коядро существует не всегда, но если существует, то определено с точностью до изоморфизма.

Как и любые коуравнители, коядро — всегда эпиморфизм. Обратно, эпиморфизм называется нормальным (иногда — конормальным), если он является коядром некоторого морфизма. Категория называется конормальной, если любой эпиморфизм в ней нормален.

Специальные случаи

В абелевой категории образ и кообраз морфизма задаются как

.

В частности, любой эпиморфизм является своим собственным коядром.

Литература

  • С. Маклейн Категории для работающего математика, — М.: ФИЗМАТЛИТ, 2004. — 352 с. — ISBN 5-9221-0400-4.
  • Paolo Aluffi Algebra: Chapter 0 (Graduate Studies in Mathematics). — 2009, ISBN 0-8218-4781-3.

Данная страница на сайте WikiSort.ru содержит текст со страницы сайта "Википедия".

Если Вы хотите её отредактировать, то можете сделать это на странице редактирования в Википедии.

Если сделанные Вами правки не будут кем-нибудь удалены, то через несколько дней они появятся на сайте WikiSort.ru .




Текст в блоке "Читать" взят с сайта "Википедия" и доступен по лицензии Creative Commons Attribution-ShareAlike; в отдельных случаях могут действовать дополнительные условия.

Другой контент может иметь иную лицензию. Перед использованием материалов сайта WikiSort.ru внимательно изучите правила лицензирования конкретных элементов наполнения сайта.

2019-2025
WikiSort.ru - проект по пересортировке и дополнению контента Википедии