WikiSort.ru - Не сортированное

ПОИСК ПО САЙТУ | о проекте

Графический метод решения задачи линейного программирования основан на геометрической интерпретации задачи линейного программирования и применяется в основном при решении задач двумерного пространства и только некоторых задач трёхмерного пространства, так как довольно трудно построить многогранник решений, который образуется в результате пересечения полупространств. Задачу пространства размерности больше трёх изобразить графически вообще невозможно.

Описание метода

Пусть задача линейного программирования задана в двумерном пространстве, то есть ограничения содержат две переменные.

Найти минимальное значение функции

при ограничениях вида

и

Допустим, что система (2) при условии (3) совместна. Каждое из неравенств из систем (2) и (3) определяет полуплоскость с граничными прямыми: .

Линейная функция (1) при фиксированных значениях является уравнением прямой линии: .

Пример графического решения задачи линейного программирования с 6 условиями.

Построим многоугольник решений системы ограничений (2) и график линейной функции (1) при . Тогда поставленной задаче линейного программирования можно дать следующую интерпретацию:

Найти точку многоугольника решений, в которой прямая опорная и функция при этом достигает минимума.

Значения уменьшаются в направлении вектора , поэтому прямую передвигаем параллельно самой себе в направлении вектора .

Если многоугольник решений ограничен (см. рисунок), то прямая дважды становится опорной по отношению к многоугольнику решений (в точках и ), причём минимальное значение принимает в точке . Координаты точки находим, решая систему уравнений прямых и .

Если же многоугольник решений представляет собой неограниченную многоугольную область, то возможны два случая.

Случай 1. Прямая , передвигаясь в направлении вектора или противоположно ему, постоянно пересекает многоугольник решений и ни в какой точке не является опорной к нему. В этом случае линейная функция не ограничена на многоугольнике решений как сверху, так и снизу.

Случай 2. Прямая, передвигаясь, всё же становится опорной относительно многоугольника решений. Тогда в зависимости от вида области линейная функция может быть ограниченной сверху и неограниченной снизу, ограниченной снизу и неограниченной сверху, либо ограниченной как снизу, так и сверху.

Литература

  • Кремер Н.Ш. Исследование операций в экономике. — Москва: Юнити, 2000. — С. 55-57. — 408 с.
  • Ашманов С.А. Линейное программирование. — Москва: «Наука», 1981. — 304 с.

Данная страница на сайте WikiSort.ru содержит текст со страницы сайта "Википедия".

Если Вы хотите её отредактировать, то можете сделать это на странице редактирования в Википедии.

Если сделанные Вами правки не будут кем-нибудь удалены, то через несколько дней они появятся на сайте WikiSort.ru .




Текст в блоке "Читать" взят с сайта "Википедия" и доступен по лицензии Creative Commons Attribution-ShareAlike; в отдельных случаях могут действовать дополнительные условия.

Другой контент может иметь иную лицензию. Перед использованием материалов сайта WikiSort.ru внимательно изучите правила лицензирования конкретных элементов наполнения сайта.

2019-2025
WikiSort.ru - проект по пересортировке и дополнению контента Википедии