WikiSort.ru - Не сортированное

ПОИСК ПО САЙТУ | о проекте

Грани́ца Джо́нсона определяет предел мощности кода длины и минимального расстояния .

Формулировка

Пусть  — -чный код длины над полем или, другими словами, подмножество . Пусть  — минимальное расстояние кода , то есть

где  — расстояние Хэмминга между кодовыми словами и .

Пусть  — множество всех -чных кодов длины и минимального расстояния и пусть обозначает подмножество всех равновесных кодов в , иными словами, всех кодов, вес всех кодовых слов которых равен .

Обозначим через количество кодовых слов в , а через  — максимальную мощность кода длины и минимального расстояния , то есть

Похожим образом определим как максимальную мощность кода в :

Теорема 1 (Граница Джонсона для ):

При

Примечание: для нахождения верхней границы на для чётных значений можно воспользоваться следующим равенством

Теорема 2 (Граница Джонсона для ):

При

При пускай , а также , тогда

где оператор обозначает целую часть числа.

Примечание: подставляя границу теоремы 2 в теорему 1, мы получим верхнюю границу для .

Доказательство первой теоремы

Пусть  — код длины , мощности с минимальным расстоянием , содержащий нулевой вектор. Обозначим через множество векторов, находящихся на расстоянии от кода , то есть

Таким образом, . Тогда , так как если бы нашёлся вектор, находящийся на расстоянии или больше от кода , то мы могли бы добавить его к и получить код ещё большей мощности. Поскольку множества не пересекаются, то отсюда следует граница сферической упаковки. Для получения же искомой границы оценим мощность .

Выберем произвольное кодовое слово и соответствующим сдвигом кода переведём его в начало координат. Кодовые слова веса образуют равновесный код с минимальным расстоянием не менее , и поэтому число кодовых слов веса не превышает .

Обозначим через множество векторов веса . Любой вектор из принадлежит либо , либо . Каждому кодовому слову веса соответствуют векторов веса , находящиеся от на расстоянии .

Все эти векторы различны и принадлежат множеству . Следовательно,

Вектор из множества находится на расстоянии не более чем от кодовых слов. Действительно, перенесём начало координат в точку и подсчитаем, сколько кодовых слов может находиться от на расстоянии и иметь между собой расстояние Хэмминга . Таковых по определению не должно быть больше . Стало быть, векторы из множества могут учитываться не более раз, то есть каждому кодовому слову соответствуют по крайней мере

различных векторов на расстоянии от .

Литература

  • S. Johnson, A new upper bound for error correcting codes, IRE Transactions on Information Theory, 203–207, April 1962.
  • F. J. MacWilliams and N. J. A. Sloane, The Theory of Error-Correcting Codes, Amsterdam, Netherlands, North-Holland, § 17.2, § 17.3, 1977.
  • W. C. Huffman, V. Pless, Fundamentals of Error-Correcting Codes, Cambridge University Press, 2003.

См. также

Данная страница на сайте WikiSort.ru содержит текст со страницы сайта "Википедия".

Если Вы хотите её отредактировать, то можете сделать это на странице редактирования в Википедии.

Если сделанные Вами правки не будут кем-нибудь удалены, то через несколько дней они появятся на сайте WikiSort.ru .




Текст в блоке "Читать" взят с сайта "Википедия" и доступен по лицензии Creative Commons Attribution-ShareAlike; в отдельных случаях могут действовать дополнительные условия.

Другой контент может иметь иную лицензию. Перед использованием материалов сайта WikiSort.ru внимательно изучите правила лицензирования конкретных элементов наполнения сайта.

2019-2025
WikiSort.ru - проект по пересортировке и дополнению контента Википедии