WikiSort.ru - Не сортированное

ПОИСК ПО САЙТУ | о проекте

Антиголоморфные функции (также называемые антианалитическими) — семейство функций, тесно связанных с голоморфными функциями.

Определение

Функция , определённая на открытом подмножестве комплексной плоскости, называется антиголоморфной, если её производная по существует во всех точках этого множества. Это равносильно условию

которым можно придать вид, аналогичный условиям Коши — Римана:

где

Функция, зависящая одновременно от и , не является ни голоморфной, ни антиголоморфной.

Свойства

  • голоморфна в тогда и только тогда, когда антиголоморфна в .
  • функция антиголоморфна тогда и только тогда, когда её можно разложить по степеням в окрестности каждой точки её области определения.
  • голоморфна в тогда и только тогда, когда антиголоморфна в .
  • если функция одновременно голоморфна и антиголоморфна, то она постоянна на любой связной компоненте её области определения.

Литература

  • Шабат Б. В. Введение в комплексный анализ. — М.: Наука. — 1969, 577 стр.

Данная страница на сайте WikiSort.ru содержит текст со страницы сайта "Википедия".

Если Вы хотите её отредактировать, то можете сделать это на странице редактирования в Википедии.

Если сделанные Вами правки не будут кем-нибудь удалены, то через несколько дней они появятся на сайте WikiSort.ru .




Текст в блоке "Читать" взят с сайта "Википедия" и доступен по лицензии Creative Commons Attribution-ShareAlike; в отдельных случаях могут действовать дополнительные условия.

Другой контент может иметь иную лицензию. Перед использованием материалов сайта WikiSort.ru внимательно изучите правила лицензирования конкретных элементов наполнения сайта.

2019-2025
WikiSort.ru - проект по пересортировке и дополнению контента Википедии