WikiSort.ru - Не сортированное

ПОИСК ПО САЙТУ | о проекте
Нахождение дополнительного минора и алгебраического дополнения

Алгебраическим дополнением элемента матрицы называется число

,

где  — дополнительный минор, определитель матрицы, получающейся из исходной матрицы путём вычёркивания i -й строки и j -го столбца.

Свойства

Алгебраическое дополнение элемента — это коэффициент, с которым этот самый элемент входит в определитель матрицы. Это утверждается следующей теоремой:

Теорема (о разложении определителя по строке/столбцу). Определитель матрицы может быть представлен в виде суммы

Для алгебраического дополнения справедливо следующее утверждение:

Лемма о фальшивом разложении определителя. Сумма произведений элементов одной строки (столбца) на соответствующие алгебраические дополнения элементов другой строки (столбца) равна нулю, то есть при и .

Из этих утверждений следует алгоритм нахождения обратной матрицы:

  • заменить каждый элемент исходной матрицы на его алгебраическое дополнение,
  • транспонировать полученную матрицу - в результате будет получена союзная матрица,
  • разделить каждый элемент союзной матрицы на определитель исходной матрицы.

См. также

Данная страница на сайте WikiSort.ru содержит текст со страницы сайта "Википедия".

Если Вы хотите её отредактировать, то можете сделать это на странице редактирования в Википедии.

Если сделанные Вами правки не будут кем-нибудь удалены, то через несколько дней они появятся на сайте WikiSort.ru .




Текст в блоке "Читать" взят с сайта "Википедия" и доступен по лицензии Creative Commons Attribution-ShareAlike; в отдельных случаях могут действовать дополнительные условия.

Другой контент может иметь иную лицензию. Перед использованием материалов сайта WikiSort.ru внимательно изучите правила лицензирования конкретных элементов наполнения сайта.

2019-2025
WikiSort.ru - проект по пересортировке и дополнению контента Википедии