Аддитивная категория — предаддитивная категория C, в которой для любого конечного множества объектов A1, … , An существует произведение A1 × ⋯ × An в C, в том числе произведение пустого множества объектов — нулевой объект.
Основной пример аддитивной категории — категория абелевых групп Ab, нулевой объект в ней — тривиальная группа, сложение морфизмов задаётся поточечно и произведения задаются прямым произведением. Более общий пример — любая категория модулей над кольцом R аддитивна, в частности, категория векторных пространств над полем K.
![]() |
Это заготовка статьи по теории категорий. Вы можете помочь проекту, дополнив её. |
Данная страница на сайте WikiSort.ru содержит текст со страницы сайта "Википедия".
Если Вы хотите её отредактировать, то можете сделать это на странице редактирования в Википедии.
Если сделанные Вами правки не будут кем-нибудь удалены, то через несколько дней они появятся на сайте WikiSort.ru .