WikiSort.ru - Не сортированное

ПОИСК ПО САЙТУ | о проекте

Экспоненциальный код Голомба порядка k — это универсальный код, параметризованный целым числом k. Разработан Соломоном Голомбом. Для кодирования неотрицательного числа в экспоненциальный код Голомба порядка k можно использовать следующий метод:

  1. Взять число N в двоичном коде, без последних k цифр. Прибавить к нему 1 (арифметически): N = N+1. Записать полученное N.
  2. Подсчитать количество C бит в N.
  3. Вычесть из С единицу: С = С-1. Записать С нулевых бит перед выбранным числом N.

Для порядка k = 0 код выглядит так:

0 => 1 => 1
1 => 10 => 010
2 => 11 => 011
3 => 100 => 00100
4 => 101 => 00101
5 => 110 => 00110
6 => 111 => 00111
7 => 1000 => 0001000
8 => 1001 => 0001001
...

Экспоненциальный код Голомба при k = 0 используется в стандартах сжатия видео H.264 и MPEG-4 AVC, в которых есть также возможность кодирования знаковых чисел путём присвоения значения 0 ключевому слову '0' в бинарном виде и последующее назначение кодовых слов ко входным значениям увеличивающихся амплитуд и переменных знаков.

Экспоненциальный код Голомба также используется в алгоритме кодирования несжатого видео Dirac.

При k = 0 экспоненциальное кодирование Голомба совпадает с гамма-кодом Элиаса этого же числа плюс один. Таким образом, он может кодировать ноль, тогда как гамма-код Элиаса может кодировать только числа больше ноля.

Несмотря на близкие название, экспоненциальное кодирование Голомба лишь немного аналогично кодированию Голомба, которое представляет собой тип энтропийного кодирования, но не является универсальным кодом.

См. также

Ссылки

Данная страница на сайте WikiSort.ru содержит текст со страницы сайта "Википедия".

Если Вы хотите её отредактировать, то можете сделать это на странице редактирования в Википедии.

Если сделанные Вами правки не будут кем-нибудь удалены, то через несколько дней они появятся на сайте WikiSort.ru .




Текст в блоке "Читать" взят с сайта "Википедия" и доступен по лицензии Creative Commons Attribution-ShareAlike; в отдельных случаях могут действовать дополнительные условия.

Другой контент может иметь иную лицензию. Перед использованием материалов сайта WikiSort.ru внимательно изучите правила лицензирования конкретных элементов наполнения сайта.

2019-2025
WikiSort.ru - проект по пересортировке и дополнению контента Википедии