WikiSort.ru - Не сортированное

ПОИСК ПО САЙТУ | о проекте
Термодинамические циклы
Статья является частью серии «Термодинамика».
Эталонный цикл Эдвардса
Цикл Аткинсона
Цикл Брайтона/Джоуля
Цикл Гирна
Цикл Дизеля
Цикл Калины
Цикл Карно
Цикл Ленуара
Цикл Миллера
Цикл Отто
Цикл Ренкина
Цикл Стирлинга
Цикл Тринклера
Цикл Хамфри
Цикл Эрикссона
Разделы термодинамики
Начала термодинамики
Уравнение состояния
Термодинамические величины
Термодинамические потенциалы
Термодинамические циклы
Фазовые переходы
править
См. также «Физический портал»
Структурная схема паросиловой установки на базе четырёх основных конструктивных составляющих, используемых при реализации классического цикла Ренкина

Цикл Ре́нкина — термодинамический цикл преобразования тепла в работу с помощью двухфазного рабочего тела (воды, ртути, фреона и т. д.), включающий испарение и конденсацию.

История

Цикл Ренкина был предложен в середине XIX века инженером и физиком У. Ренкином. По состоянию на начало 2000-х годов по циклу Ренкина в разных его вариациях, с использованием паровых турбин, вырабатывалось около 90 % всей электроэнергии, потребляемой в мире[1], включая паросиловые установки солнечных, атомных, а также тепловых электростанций, использующих в качестве топлива мазут, газ, уголь или торф. Цикл Ренкина используется также в радиоизотопных электрогенераторах.

КПД цикла

Термодинамические исследования цикла Ренкина показывают, что его эффективность в большей степени зависит от величин начальных и конечных параметров (давления и температуры) пара.

Процессы

Диаграмма T-S

Цикл Ренкина состоит из следующих процессов:

  • изобара линия 4-5-6-1. Происходит нагрев и испарение воды, а затем перегрев пара. В процессе затрачивается теплота .
  • адиабата линия 1-2. Процесс расширения пара в турбине, то есть её вращение паром ( ).
  • изобара линия 2-3 Конденсация отработанного пара с отводом теплоты охлаждающей водой.
  • адиабата линия 3-4. Сжатие сконденсировавшейся воды до первоначального давления в парогенераторе с затратой работы .

Применение

Цикл Ренкина нашёл применение в современных тепловых электростанциях большой мощности, использующих в качестве рабочего тела водяной пар.

Обратный цикл Ренкина

При прохождении цикла Ренкина в обратном направлении (1—6—5—4—3—2—1) он описывает рабочий процесс холодильной машины с двухфазным рабочим телом (то есть претерпевающим в ходе процесса фазовые переходы от газа к жидкости и наоборот). Холодильные машины, работающие по этому циклу, с фреоном в качестве рабочего тела широко используются на практике в качестве бытовых холодильников, кондиционеров и промышленных рефрижераторов с температурой морозильника до −40 °C.

Варианты цикла Ренкина

Цикл Ренкина с перегревом

Регенеративный цикл

Цикл паротурбинной установки, в котором питательная вода до её поступления в котельный агрегат подвергается предварительному нагреву паром, отбираемым из промежуточной ступени паровой турбины. Подогрев реализуется посредством специального теплообменника — регенеративного подогревателя.

Иные жидкости для цикла Ренкина

В так называемом Органическом цикле Ренкина[en] вместо воды и водяного пара используются органические жидкости, например н-пентан[2] или толуол[3]. За счет этого становится возможным использовать источники тепла, имеющие низкую температуру, например солнечные пруды (Solar pond), которые обычно нагреваются до 70—90 °C[4]. Термодинамическая эффективность подобного варианта цикла невелика из-за низких температур, однако низкотемпературные источники тепла значительно дешевле высокотемпературных. Геотермальная электростанция Ландау[de] в Германии в качестве рабочего тела использует изопентан.

Также цикл Ренкина может быть использован с жидкостями, имеющими более высокую температуру кипения, чем вода, для получения большей эффективности. Примером таких машин является турбина, работающая на парах ртути, используемая как высокотемпературная часть в ртутно-водяном бинарном цикле Ртутнопаровая турбина (англ.)).[5][6]

См. также

Бинарные циклы

Примечания

  1. Wiser, Wendell H. Energy resources: occurrence, production, conversion, use. — Birkhäuser, 2000. — P. 190. ISBN 978-0-387-98744-6.
  2. Canada, Scott; G. Cohen, R. Cable, D. Brosseau, and H. Price (2004-10-25). “Parabolic Trough Organic Rankine Cycle Solar Power Plant” (PDF). 2004 DOE Solar Energy Technologies. Denver, Colorado: US Department of Energy NREL. Проверено 2009-03-17. Используется устаревший параметр |coauthors= (справка)
  3. Batton, Bill Organic Rankine Cycle Engines for Solar Power. Solar 2000 conference. Barber-Nichols, Inc. (18 июня 2000). Проверено 18 марта 2009. Архивировано 20 августа 2013 года.
  4. Nielsen et al., 2005, Proc. Int. Solar Energy Soc.
  5. Вукалович М. П. Новиков И. И. Термодинамика. М., 1972. С. 585.
  6. Виды теплофикационных турбин (Учебно-методический комплекс «Техническая термодинамика») // Чувашский государственный университет. : «Ртуть имеет невысокое давление насыщения при высоких температурах и высокие критические параметры pкр = 151 МПа (1540 кгс/см2), Ткр = 1490° С, а при температуре, например, 550 °C давление насыщения составляет всего лишь 1420 кПа (14,5 кгс/см2); это позволяет осуществить цикл Ренкина на насыщенном ртутном паре без перегрева с достаточно высоким термическим к.п.д. … Таким образом, ртуть как рабочее тело хороша для верхней (высокотемпературной) части цикла и неудовлетворительна для нижней».

Литература

  1. Г.Ф. Быстрицкий. Основы энергетики. М.: Инфра-М, 2007. — 276 с. ISBN 978-5-16-002223-9.
  2. Техническая термодинамика. Под ред. В. И. Крутова. Москва «Высшая школа» 1981 (формат djvu)

Данная страница на сайте WikiSort.ru содержит текст со страницы сайта "Википедия".

Если Вы хотите её отредактировать, то можете сделать это на странице редактирования в Википедии.

Если сделанные Вами правки не будут кем-нибудь удалены, то через несколько дней они появятся на сайте WikiSort.ru .




Текст в блоке "Читать" взят с сайта "Википедия" и доступен по лицензии Creative Commons Attribution-ShareAlike; в отдельных случаях могут действовать дополнительные условия.

Другой контент может иметь иную лицензию. Перед использованием материалов сайта WikiSort.ru внимательно изучите правила лицензирования конкретных элементов наполнения сайта.

2019-2025
WikiSort.ru - проект по пересортировке и дополнению контента Википедии