WikiSort.ru - Не сортированное

ПОИСК ПО САЙТУ | о проекте
Флуоресценция уранового стекла в ультрафиолетовом свете
Тоник при облучении видимым (слева) и ультрафиолетовым (справа) светом. Голубая флуоресценция обусловлена наличием в напитке производных хинина.

Флуоресце́нция, или флюоресценция — физический процесс, разновидность люминесценции. Флуоресценцией обычно называют излучательный переход возбужденного состояния с самого нижнего синглетного колебательного уровня S1 в основное состояние S0[источник не указан 264 дня]. В общем случае флуоресценцией называют разрешенный по спину излучательный переход между двумя состояниями одинаковой мультиплетности: между синглетными уровнями или триплетными . Типичное время жизни такого возбужденного состояния составляет 10−11−10−6 с.

Флуоресценцию следует отличать от фосфоресценции — запрещенного по спину излучательного перехода между двумя состояниями разной мультиплетности. Например, излучательный переход возбужденного триплетного состояния T1 в основное состояние S0. Синглет-триплетные переходы имеют квантовомеханический запрет, поэтому время жизни возбужденного состояния при фосфоресценции составляет порядка 10−3−10−2 с.

Происхождение термина

Термин «флуоресценция» происходит от названия минерала флюорит, у которого она впервые была обнаружена, и лат. -escent — суффикс, означающий слабое действие.

История изучения

Впервые флуоресценцию соединений хинина наблюдал физик Джордж Стокс в 1852 году.

Теоретические основы

Согласно представлениям квантовой химии, электроны в атомах расположены на энергетических уровнях. Расстояние между энергетическими уровнями в молекуле зависит от её строения. При облучении вещества светом возможен переход электронов между различными энергетическими уровнями. Разница энергии между энергетическими уровнями и частота колебаний поглощенного света соотносятся между собой уравнением (II постулат Бора):

После поглощения света часть полученной системой энергии расходуется в результате релаксации. Часть же может быть испущена в виде фотона определённой энергии.

Соотношение спектров поглощения и флуоресценции

Спектр флуоресценции сдвинут относительно спектра поглощения в сторону длинных волн. Это явление получило название «Стоксов сдвиг». Его причиной являются безызлучательные релаксационные процессы. В результате часть энергии поглощенного фотона теряется, а испускаемый фотон имеет меньшую энергию, и, соответственно, большую длину волны.[1]

Схематическое изображение процессов испускания и поглощения света. Диаграмма Яблонского

Схематически процессы поглощения света и флуоресценции показывают на диаграмме Яблонского.

При нормальных условиях большинство молекул находятся в основном электронном состоянии . При поглощении света молекула переходит в возбужденное состояние . При возбуждении на высшие электронные и колебательные уровни избыток энергии быстро расходуется, переводя флуорофор на самый нижний колебательный подуровень состояния . Однако, существуют и исключения: например, флуоресценция азулена может происходить как из , так и из состояния.

Квантовый выход флуоресценции

Квантовый выход флуоресценции показывает, с какой эффективностью проходит данный процесс. Он определяется как отношение количества испускаемых и поглощаемых фотонов. Квантовый выход флуоресценции может быть рассчитан по формуле

где  — количество испускаемых в результате флуоресценции фотонов, а  — общее количество поглощаемых фотонов. Чем больше квантовый выход флуорофора, тем интенсивнее его флуоресценция. Квантовый выход можно также определить с помощью упрощенной диаграммы Яблонского[2], где и  — константы скорости излучательной и безызлучательной дезактивации возбужденного состояния.

Тогда доля флуорофоров, возвращающихся в основное состояние с испусканием фотона, и, следовательно, квантовый выход:

Из последней формулы следует, что если , то есть если скорость безызлучательного перехода значительно меньше скорости излучательного перехода. Отметим, что квантовый выход всегда меньше единицы из-за стоксовых потерь.

Флуоресцентные соединения

Флюоресценция в ультрафиолетовом свете 0,0001 % водных растворов: голубым — хинина, зелёным — флуоресцеина, оранжевым — родамина-B, жёлтым — родамина-6G

К флуоресценции способны многие органические вещества, как правило содержащие систему сопряженных π-связей. Наиболее известными являются хинин, метиловый зелёный, метиловый синий, феноловый красный, кристаллический фиолетовый, бриллиантовый синий кризоловый, POPOP, флуоресцеин, эозин, акридиновые красители (акридиновый оранжевый, акридиновый жёлтый), родамины (родамин 6G, родамин B) и многие другие.

Применение

В производстве красок и окраске текстиля

Флуоресцентные пигменты добавляются в краски, фломастеры, а также при окраске текстильных изделий, предметов обихода, украшений и т. п. для получения особо ярких («кричащих», «кислотных») цветов с повышенным спектральным альбедо в нужном диапазоне длин волн, иногда превышающим 100 %. Данный эффект достигается за счет того, что флуоресцентные пигменты преобразуют содержащийся в естественном свете и в свете многих искусственных источников ультрафиолет (а также для жёлтых и красных пигментов, коротковолновую часть видимого спектра) в излучение нужного диапазона, делая цвет более интенсивным. Особой разновидностью флуоресцентных текстильных пигментов является оптическая синька, преобразующая ультрафиолет в излучение синего цвета, компенсирующее естественный желтоватый оттенок ткани, чем достигается эффект белоснежного цвета одежды и постельного белья. Оптическая синька применяется как при фабричной окраске тканей, так и для освежения цвета при стирке, в стиральных порошках. Аналогичные пигменты применяются и в производстве многих сортов бумаги, включая бумагу для повседневного офисного использования. В ней содержание пигмента с синькой, как правило, наибольшее.

Флуоресцентные краски, в сочетании с «чёрным светом», часто используются в дизайне дискотек и ночных клубов. Практикуется также применение флуоресцентных пигментов в красках для татуировки.

В технике

В технические жидкости, например — антифризы, часто добавляют флюоресцентные добавки, облегчающие поиск течи из агрегата. В ультрафиолетовом свете подтёки такой жидкости становятся очень хорошо заметны.

В биологии и медицине

Флюоресценция (снизу) под ультрафиолетовым освещением спиртового раствора хлорофилла

В биохимии и молекулярной биологии нашли применение флуоресцентные зонды и красители, которые используются для визуализации отдельных компонентов биологических систем. Например, эозинофилы (клетки крови) называются так потому, что имеют сродство к эозину, благодаря чему легко поддаются подсчёту при анализе крови.

Лазеры

Флуорофоры с высокими квантовыми выходами и хорошей фотостойкостью могут применяться в качестве компонентов активных сред лазеров на красителях.

В криминалистике

Отдельные флуоресцирующие вещества используются в оперативно-розыскной деятельности (для нанесения пометок на деньги, иные предметы в ходе документирования фактов дачи взяток и вымогательства. Также могут использоваться в химловушках)

В гидрологии и экологии

Флуоресцеин был применен в 1877 для доказательства того, что реки Дунай и Рейн соединены подземными каналами.[3]. Краситель внесли в воды Дуная, и спустя несколько часов характерную зелёную флуоресценцию обнаружили в небольшой речке, впадающей в Рейн. Сегодня флуоресцеин используют также как специфический маркер, который облегчает поиск потерпевших крушение летчиков в океане. Для этого просто разбивается ампула с красителем, который, растворяясь в воде, образует хорошо заметное зелёное пятно большого размера. Также флуорофоры могут использоваться для анализа загрязнения окружающей среды (обнаружение утечки нефти (масляных пленок) в морях и океанах).

См. также

Примечания

  1. Стоксов сдвиг в растворах и газах. Независимость спектра испускания от длины волны поглощения. Правило зеркальной симметрии и исключения из него.
  2. Joseph R. Lakowicz. Principles of Fluorescence Spectroscopy / R. J. Lakowicz. -N.Y.: Springer Science, 2006. — 960 p.
  3. Berlman IB. 1971. Handbook of fluorescence spectra of aromatic molecules, 2nd ed. Academic Press, New York.

Литература

Ссылки

Данная страница на сайте WikiSort.ru содержит текст со страницы сайта "Википедия".

Если Вы хотите её отредактировать, то можете сделать это на странице редактирования в Википедии.

Если сделанные Вами правки не будут кем-нибудь удалены, то через несколько дней они появятся на сайте WikiSort.ru .




Текст в блоке "Читать" взят с сайта "Википедия" и доступен по лицензии Creative Commons Attribution-ShareAlike; в отдельных случаях могут действовать дополнительные условия.

Другой контент может иметь иную лицензию. Перед использованием материалов сайта WikiSort.ru внимательно изучите правила лицензирования конкретных элементов наполнения сайта.

2019-2024
WikiSort.ru - проект по пересортировке и дополнению контента Википедии