Уравнения Беккера-Дёринга (англ. Becker-Döring Equations) — уравнения, моделирующие динамику коагуляции и фрагментации кластеров идентичных частиц, разработаны в 1935 году немецкими учёными Беккером и Дёрингом[1]. Пишутся в предположении о молекулярном механизме изменения агрегационного числа (то есть, числа молекул в зародыше)
и описывают эволюцию концентраций зародышей
во времени. В частности, уравнения Беккера-Дёринга широко используются при описании кинетики мицеллярных систем.
Молекулярный механизм
Ограничимся рассмотрением неионного однокомпонентного ПАВ. Обозначая через
зародыш, состоящий из
молекул ПАВ можем рассматривать такой механизм прямых и обратных переходов:
где
- число мономеров ПАВ, поглощаемых агрегатом
за единицу времени (величины
могут быть названы скоростями присоединения мономеров),
– число мономеров ПАВ, испускаемых агрегатом
в раствор за единицу времени.
Потоки
Дополнительно определим потоки вдоль оси чисел агрегации
:
Уравнения в разностной форме
Тогда мы можем написать уравнения Беккера-Дёринга для концентраций зародышей:
Литература
- Slemrod M. (2000) The Becker-Döring Equations. In: Bellomo N., Pulvirenti M. (eds) Modeling in Applied Sciences. Modeling and Simulation in Science, Engineering and Technology. Birkhäuser, Boston, MA.
- Ball, J.M., Carr, J. & Penrose, O. Commun.Math. Phys. (1986) 104: 657. https://doi.org/10.1007/BF01211070.
- Asymptotic behaviour of solutions to the Becker-Döring equations for arbitrary initial data. Ball, J. M.Carr, J. //Proceedings of the Royal Society of Edinburgh: Section A Mathematics 1988.
Данная страница на сайте WikiSort.ru содержит текст со страницы сайта "Википедия".
Если Вы хотите её отредактировать, то можете сделать это на странице редактирования в Википедии.
Если сделанные Вами правки не будут кем-нибудь удалены, то через несколько дней они появятся на сайте WikiSort.ru .