Название «тропическая» отдаёт честь бразильской школе[1] — пионерским работам бразильского математика венгерского происхождения Имре Шимона[pt][2][3][4], исследовавшего тропическое полукольцо в связи с вопросами информатики и теории оптимизации[5].
Основные понятия
Тропические кривые второй степени (в разных масштабах). Показаны соответствующие многочлены. Числа у рёбер показывают их кратность, если она не соответствует их наклону.Тропические кривые третьей степени.
Тропический многочлен степени на плоскости — кусочно-аффинная функция вида
Аналогично, тропический многочлен в общем случае — кусочно-аффинная функция вида
Тропическая кривая на плоскости, соответствующая данному тропическому многочлену степени — граф на плоскости, вершины и рёбра (конечные и бесконечные) которого образуют множество точек негладкости функции . Рёбра этого графа считаются снабжёнными кратностями: ребро, разделяющее области линейности, отвечающие набору степеней и , снабжается кратностью, равной наибольшему общему делителю разностей и .
В частности, тропическая прямая есть объединение трёх лучей, исходящих из некоторой точки и направленных вниз, влево и вправо-вверх под 45°. Тропические прямые обладают свойствами, аналогичными свойствам обычных прямых: через любые две точки общего положения проходит ровно одна тропическая прямая, и две тропические прямые общего положения пересекаются в единственной точке.
Другой контент может иметь иную лицензию. Перед использованием материалов сайта WikiSort.ru внимательно изучите правила лицензирования конкретных элементов наполнения сайта.
2019-2025 WikiSort.ru - проект по пересортировке и дополнению контента Википедии