Теорема отсчётов в частотной области гласит, что, если аналоговый сигнал имеет ограниченную длительность, то его спектр может быть однозначно восстановлен по своим дискретным выборкам, взятым с интервалом:
где — интервал частотных выборок сигнала; — период сигнала.
Данная теорема является дуальной к теореме отсчётов во временной области. Если выполнять дискретизацию спектра сигнала с ограниченной длительностью, то во временной области будет получаться его периодическое продолжение. Если условие не будет выполняться, то будет возникать наложение во времени (аналогично наложению спектров при дискретизации во временной области).
![]() |
Это заготовка статьи по математике. Вы можете помочь проекту, дополнив её. |
Данная страница на сайте WikiSort.ru содержит текст со страницы сайта "Википедия".
Если Вы хотите её отредактировать, то можете сделать это на странице редактирования в Википедии.
Если сделанные Вами правки не будут кем-нибудь удалены, то через несколько дней они появятся на сайте WikiSort.ru .