Теорема Шеннона — Лупанова определяет число элементов, необходимых для реализации автомата в заданном автоматном базисе[неизвестный термин].
1. Для любого базиса : , где — константа, зависящая от базиса.
2. Для любого доля функций , для которых стремится к нулю с ростом .
Здесь , где максимум берется по всем функциям от переменных[пояснить]. Знак обозначает асимптотическое равенство: , если . Смысл второго утверждения теоремы в том, что с ростом почти все функции реализуются со сложностью, близкой к верхней границе .
Доказательство есть в статье[1].
Данная страница на сайте WikiSort.ru содержит текст со страницы сайта "Википедия".
Если Вы хотите её отредактировать, то можете сделать это на странице редактирования в Википедии.
Если сделанные Вами правки не будут кем-нибудь удалены, то через несколько дней они появятся на сайте WikiSort.ru .