Теоре́ма Па́ппа — это классическая теорема проективной геометрии. Она формулируется следующим образом:
Пусть A, B, C — три точки на одной прямой, A' , B' , C' — три точки на другой прямой. Пусть три прямые АВ' , BC' , CA' пересекают три прямые A’B, B’C, C’A, соответственно в точках X, Y, Z. Тогда точки X, Y, Z лежат на одной прямой. |
Несложно видеть, что двойственная формулировка к теореме Паппа является лишь переформулировкой самой теоремы:
Пусть прямые проходят через точку A, проходят через точку A'. пересекает и в точках B и C, пересекает и в точках C' и Z, пересекает и в точках B' и X. Тогда прямые BC', B’C и XZ пересекаются в одной точке (на чертеже — точка Y) или параллельны. |
Теорема Паппа является вырожденным случаем в теореме Паскаля: если заменить в теореме Паскаля вписанный в конику шестиугольник на вписанный в пару пересекающихся прямых, то она станет эквивалентной теореме Паппа. Сам Паскаль считал пару прямых коническим сечением (то есть считал теорему Паппа частным случаем своей теоремы).
Формулировка и доказательство этой теоремы содержатся в «Математическом собрании» Паппа Александрийского (начало IV века н. э.). В Новое время теорема была опубликована издателем и комментатором работ Паппа Федерико Коммандино в 1566 году.
Одно из доказательств использует перенос пары точек на бесконечность. Если увести на бесконечность прямую XY, то теорема переходит в следующее утверждение о параллельности прямых:
Это утверждение доказывается применением гомотетии.
Другое доказательство использует многократное применение теоремы Менелая.
Данная страница на сайте WikiSort.ru содержит текст со страницы сайта "Википедия".
Если Вы хотите её отредактировать, то можете сделать это на странице редактирования в Википедии.
Если сделанные Вами правки не будут кем-нибудь удалены, то через несколько дней они появятся на сайте WikiSort.ru .