WikiSort.ru - Не сортированное

ПОИСК ПО САЙТУ | о проекте

Теорема Куранта — Фишера — теорема о свойстве эрмитова оператора в гильбертовом пространстве функций. Также называется теоремой о минимаксе[1].

Формулировка

 — линейный самосопряжённый оператор, действующий в конечномерном комплексном или действительном пространстве,
 — единичная сфера,
 — ортонормированный базис пространства , состоящий из собственных векторов оператора ,
 — -ое собственное значение оператора и
 — -мерное подпространство .

Доказательство

,
 — -мерное подпространство ,
 — линейная оболочка векторов .
.
Откуда следует, что . Пусть и .
Так как то .
С другой стороны: так как то

Равенство достигается при .

Дополнительно

Очевидно, что .

Примечания

  1. Ли Цзун-дао. Математические методы в физике. — М.: Мир, 1965. — c. 190

Литература

  1. Р. Беллман. Введение в теорию матриц
  2. Ланкстер. Теория Матриц
  3. Прасолов Задачи и теоремы линейной алгебры.
  4. Ильин, Ким. Линейная алгебра и аналитическая геометрия

Данная страница на сайте WikiSort.ru содержит текст со страницы сайта "Википедия".

Если Вы хотите её отредактировать, то можете сделать это на странице редактирования в Википедии.

Если сделанные Вами правки не будут кем-нибудь удалены, то через несколько дней они появятся на сайте WikiSort.ru .




Текст в блоке "Читать" взят с сайта "Википедия" и доступен по лицензии Creative Commons Attribution-ShareAlike; в отдельных случаях могут действовать дополнительные условия.

Другой контент может иметь иную лицензию. Перед использованием материалов сайта WikiSort.ru внимательно изучите правила лицензирования конкретных элементов наполнения сайта.

2019-2025
WikiSort.ru - проект по пересортировке и дополнению контента Википедии