WikiSort.ru - Не сортированное

ПОИСК ПО САЙТУ | о проекте

Теорема Жордана — Гёльдера гласит:

Если у группы существует композиционный ряд , то его длина и все факторы определены однозначно, с точностью до перестановок и изоморфизмов[1].

Это классический вариант теоремы Жордана — Гёльдера. Он относится к случаю, когда композиционный ряд конечен, то есть включает конечное число подгрупп группы . Теорема Жордана — Гёльдера остается справедливой и в случае восходящих трансфинитных композиционных рядов[2].

Литература

  1. Винберг Э. Б. Курс алгебры. — 3-е изд. М.: Факториал Пресс, 2002. ISBN 5-88688-0607.
  2. Sharipov, R.A. (2009), "Transfinite normal and composition series of groups", arΧiv:0908.2257 [math.GR]

См. также

Данная страница на сайте WikiSort.ru содержит текст со страницы сайта "Википедия".

Если Вы хотите её отредактировать, то можете сделать это на странице редактирования в Википедии.

Если сделанные Вами правки не будут кем-нибудь удалены, то через несколько дней они появятся на сайте WikiSort.ru .




Текст в блоке "Читать" взят с сайта "Википедия" и доступен по лицензии Creative Commons Attribution-ShareAlike; в отдельных случаях могут действовать дополнительные условия.

Другой контент может иметь иную лицензию. Перед использованием материалов сайта WikiSort.ru внимательно изучите правила лицензирования конкретных элементов наполнения сайта.

2019-2025
WikiSort.ru - проект по пересортировке и дополнению контента Википедии