Теорема Баргмана — Вигнера — теорема аксиоматической квантовой теории поля. Раскрывает значение понятия универсальной накрывающей группы при преобразованиях Пуанкаре в релятивистской квантовой теории. Была доказана Ю. Вигнером [1]и В. Баргманом[2].
Векторы состояния при преобразованиях из собственной группы Пуанкаре преобразуются по унитарному представлению её универсальной накрывающей (квантовомеханической собственной группы Пуанкаре)[3].
Иначе говоря, из каждого луча можно выбрать по одному представителю так что имеют место соотношения [4]:
где определяется формулой .
Лучом называется вектор состояния в сепарабельном гильбертовом пространстве[5]. Группа называется универсальной накрывающей связной группы , если - минимальная односвязная группа, гомоморфная [6]. - четырехмерный вектор[7]. - матрицы Паули[7].
Данная страница на сайте WikiSort.ru содержит текст со страницы сайта "Википедия".
Если Вы хотите её отредактировать, то можете сделать это на странице редактирования в Википедии.
Если сделанные Вами правки не будут кем-нибудь удалены, то через несколько дней они появятся на сайте WikiSort.ru .