Структура Меркла — Дамгора (MD, Merkle—Damgård) — метод построения криптографических хеш-функций, предусматривающий разбиение входных сообщений произвольной длины на блоки фиксированной длины и работающий с ними по очереди с помощью функции сжатия, каждый раз принимая входной блок с выходным от предыдущего прохода.
Впервые описана в 1979 году в докторской диссертации Ральфа Меркла[1]. Меркл и Дамгор[en] независимо показали: если функция сжатия устойчива к коллизиям, то и хеш-функция будет также устойчива[2][3] — чтобы доказать устойчивость структуры сообщение дополняется блоком, который кодирует длину первоначального сообщения (упрочнение Меркла — Дамгора).
Односторонняя функция сжатия , преобразует два входных блока фиксированной длины в выходной блок того же размера, что и входные; алгоритм начинает с вектора инициализации IV, функция выполняется последовательно над результатом каждого предыдущего прохода.
Структура предусматривает вектор инициализации — фиксированное значение, которое зависит от реализации алгоритма, и которое применяется к первому проходу — применению функции сжатия к нему и первому блоку сообщения. Результат каждого прохода передаётся на следующий вход и очередному блоку сообщения; последний блок дополняется нулями, если необходимо, также, добавляется блок с информацией о длине целого сообщения. Для упрочнения хеша последний результат иногда пропускают через функцию финализации (англ.finalisation function), которая может использоваться также для уменьшения размера выходного хеша сжатием результата последнего применения в хеш более маленького размера, или чтобы гарантировать лучшее смешивание битов и усилить влияние небольшого изменения входного сообщения на хеш (обеспечить лавинный эффект). Функция финализации часто строится с использованием функции сжатия.
Основные алгоритмы, реализующие структуру Меркла — Дамгора — MD5, SHA-1, семейство SHA-2.
Характеристики безопасности
Популярность структуры Меркла — Дамгора обусловлена следующим результатом: если односторонняя функция сжатия устойчива к коллизиям, то и хеш-функция, построенная на её основе, будет также устойчива к коллизиям. При этом структура имеет несколько нежелательных свойств:
атака нахождения второго прообраза для длинных сообщений всегда намного более эффективна, чем полный перебор. Атака для сообщения из блоков может быть выполнена за время ; важно, что сложность атаки находится между и , когда сообщения длинные, а когда длина сообщения становится меньше — сложность приближается к [4];
множественные коллизии (много сообщений имеют одинаковый хеш) могут быть найдены лишь незначительно бо́льшими усилиями, чем коллизии[5];
атаки дополнением сообщения: при данном хеше неизвестного входного сообщения легко найти значение , где — функция дополнения; это значит, что возможно найти хеши входных сообщений, связанных с , даже когда остаётся неизвестным[6]; случайный оракул не имеет такой возможности, и это может привести к простым атакам даже на схемы, безопасность которых была доказана для модели случайного оракула[7].
Пример
Для того, чтобы передать сообщение в функцию сжатия, необходимо дополнить последний блок до полного определёнными данными (обычно нулями). Например, для сообщения «HashInput» и размера блока для функции сжатия 8 байт (64 бит), получится 2 блока:
HashInpu t0000000
Но этого недостаточно, так как это будет означать, что различные сообщения, начинающиеся одними и теми же символами, и заканчивающимися нулями или другими байтами из заполнителя, будут поступать в функцию сжатия совершенно одинаковыми блоками, и будет получаться одинаковая хеш-сумма. В этом примере сообщение «HashInput00» будет разделено на такие же блоки, что и первоначальное сообщение «HashInput». Чтобы этого избежать, первый бит добавляемых данных, должен быть изменён. Так как заполнитель обычно состоит из нулей, первый бит заполнителя должен быть заменён на «1»:
HashInpu t1000000
Чтобы усилить хеш, можно добавить длину сообщения в дополнительном блоке:
HashInpu t1000000 00000009
Чтобы избежать двусмысленности, значение длины сообщения должно быть само по себе устойчиво к добавлению заполнителя в блок. Наиболее распространенные реализации используют фиксированный размер (обычно 64 или 128 бит в современных алгоритмах) и фиксированную позицию в конце последнего блока для кодирования значения длины сообщения.
Однако, немного расточительно кодировать один дополнительный блок для длины сообщения, поэтому, существует небольшая оптимизация алгоритма, которая часто используется: если в последнем блоке сообщения достаточно места значение длины сообщения может быть добавлено к нему. Например, если кодировать длину сообщения в 5 байт, то достаточно двух блоков для примера:
HashInpu t1000009
Модификации
В 2006 году был предложен подход HAIFA, при котором структура Меркла — Дамгора немного модифицируется: в каждую функцию сжатия дополнительно к блоку сообщения подаётся текущее смещение во входном файле и, опционально, некоторая соль.
Пример широкого конвейера: промежуточное состояние в два раза больше, чем выход хеш-функции
Из-за некоторых слабых мест структуры, особенно проблемы, связанной с дополнением сообщения до необходимой длины, в 2004 году Штефаном Люксом[en] предложено применять широконвейерный хеш (англ.wilde pipe hash)[8], похожий на структуру Меркла — Дамгора, но имеющий больше внутренних состояний, то есть битовая длина, использующаяся внутри алгоритма больше, чем выходная. Таким образом, последний этап — вторая функция сжатия, которая сжимает последнее внутреннее значение хеша в окончательное значение. SHA-224 и SHA-384 были получены из SHA-256 и SHA-512 соответственно путём применения этого алгоритма.
↑ Yevgeniy Dodis, Thomas Ristenpart, Thomas Shrimpton. Salvaging Merkle-Damgård for Practical Applications. Preliminary version in Advances in Cryptology — EUROCRYPT '09 Proceedings, Lecture Notes in Computer Science Vol. 5479, A. Joux, ed, Springer-Verlag, 2009, pp. 371—388.
Introduction to Modern Cryptography, by Jonathan Katz and Yehuda Lindell. Chapman and Hall/CRC Press, August 2007, page 134 (construction 4.13).
В этой статье или разделе имеется список источников или внешних ссылок, но источники отдельных утверждений остаются неясными из-за отсутствия сносок.
Утверждения, не подкреплённые источниками, могут быть поставлены под сомнение и удалены. Вы можете улучшить статью, внеся более точные указания на источники.
Данная страница на сайте WikiSort.ru содержит текст со страницы сайта "Википедия".
Другой контент может иметь иную лицензию. Перед использованием материалов сайта WikiSort.ru внимательно изучите правила лицензирования конкретных элементов наполнения сайта.
2019-2025 WikiSort.ru - проект по пересортировке и дополнению контента Википедии