Стационарная теория возмущений в квантовой механике — теория возмущений, где гамильтониан не зависит от времени. Теория построена Шрёдингером в 1926 году.
Теория применима для достаточно слабых возмущений:
, при этом параметр
должен быть настолько маленьким, чтобы возмущение не слишком искажало невозмущённый спектр
.
Невырожденный спектр
В теории возмущений решение представляется в виде разложения
Конечно, должно быть верно уравнение Шрёдингера:
Подставляя разложение в это уравнение, получим
Собирая слагаемые одинакового порядка по
, получим последовательности уравнений
и т. д. Эти уравнения должны решаться последовательно для получения
и
. Слагаемое с индексом
— это решение для невозмущённого уравнения Шрёдингера, поэтому говорят также о «приближении нулевого порядка». Аналогично говорят о «приближении k-го порядка», если рассчитывают решение до слагаемых
и
.
Из второго уравнения получаем, что можно определять однозначно решения для
только с дополнительными условиями, так как каждая линейная комбинация
и
является решением. Возникает вопрос о нормализации. Мы можем предположить, что
, но в то же время из нормировки точного решения следует
. Тогда в первом порядке (по параметру λ) для условия нормировки нужно положить
. Поскольку выбор фазы в квантовой механике произволен, можно без потери общности сказать, что число
действительно. Поэтому
, и, как следствие, налагаемое дополнительное условие примет вид:
Так как невозмущённое состояние
должно быть нормируемо, сразу следует
и из этого
Получаем поправку в первом порядке
и для поправки энергии во втором порядке
Литература
Landau L. D., Lifschitz E. M. Quantum Mechanics: Non-relativistic Theory. — 3rd. — ISBN 0-08-019012-X.
Данная страница на сайте WikiSort.ru содержит текст со страницы сайта "Википедия".
Если Вы хотите её отредактировать, то можете сделать это на странице редактирования в Википедии.
Если сделанные Вами правки не будут кем-нибудь удалены, то через несколько дней они появятся на сайте WikiSort.ru .