Срединный граф — граф, представляющий рёбра смежности внутри граней заданного планарного графа.
Если задан связный планарный граф , его срединный граф содержит:
Срединный граф несвязного графа является несвязным объединением срединных графов компонент связности.
Поскольку срединный граф зависит от способа вложения, срединный граф не единственнен в том смысле, что один и тот же планарный граф может иметь несколько неизоморфных срединных графов. И обратно, неизоморфные графы могут иметь тот же самый срединный граф. В частности, планарный граф и его двойственный граф имеют один срединный граф.
Срединные графы являются 4-регулярными графами. При этом любой 4-регулярный планарный граф является срединным графом некоторого планарного графа. Для связного 4-регулярного планарного графа планарный граф , для которого является срединным, можно построить следующим образом: раскрашиваются грани в два цвета (что возможно, поскольку является эйлеровым, и поскольку двойственный графу является двудольным); вершины в соответствуют граням одного цвета в . Эти вершины соединены ребром для каждой общей (для двух граней) вершины в . Заметим, что проделывая данное построение с гранями другого цвета, получим двойственный граф.
Если два графа имеют один срединный граф, они двойственны[1].
В серединный граф может быть введена ориентация: для этого осуществляется раскраска срединного графа в два цвета в зависимости от то того, содержит ли грань срединного графа вершины исходного графа или нет, а ориентация вводится таким образом, чтобы грани какого-либо из цветов оказывались слева от рёбер.
Планарный граф и его двойственный имеют разные ориентированные срединные графы, которые являются обратными[en] друг другу.
Для планарного графа удвоенное значение многочлена Татта[en] в точке (3,3) равно сумме по взвешенным эйлеровым ориентациям[en] в срединном графе , где вес ориентации равен ( — число седловых вершин ориентации, то есть число вершин, у которых инцидентные дуги упорядочены по циклу «входящая — исходящая — входящая — исходящая»)[2]. Поскольку многочлен Татта является инвариантом при вложениях, результат показывает, что для заданного графа любой срединный граф имеет одну и ту же взвешенную сумму эйлеровых ориентаций.
Используя ориентированный срединный граф можно эффективно обобщить результат вычисления многочлена Татта в точке (3,3). Для планарного графа , умноженное на значение многочлена Татта в точке равно взвешенной сумме всех раскрасок дуг в цвета в ориентированном срединном графе графа , так что каждое (возможно пустое) множество дуг одного цвета образует ориентированный эйлеров граф, где вес эйлеровой ориентации равен ( — количество одноцветных вершин, то есть вершин, все четыре ребра, инцидентные которой, имеют один цвет)[3][4].
Для улучшения этой статьи желательно: |
Данная страница на сайте WikiSort.ru содержит текст со страницы сайта "Википедия".
Если Вы хотите её отредактировать, то можете сделать это на странице редактирования в Википедии.
Если сделанные Вами правки не будут кем-нибудь удалены, то через несколько дней они появятся на сайте WikiSort.ru .