WikiSort.ru - Не сортированное

ПОИСК ПО САЙТУ | о проекте
У совершенного кубоида стороны a, b, c, диагонали граней d, e, f и главная диагональ g — целые числа

Совершенный кубоид[1] — прямоугольный параллелепипед, у которого все семь основных величин (три ребра, диагонали его граней и диагональ самого параллелепипеда) являются натуральными числами. Иначе говоря, совершенный кубоид — решение системы следующих диофантовых уравнений в натуральных числах:

До сих пор неизвестно, существует ли такой параллелепипед. Компьютерный перебор не нашёл ни одного совершенного кубоида с рёбрами до 3·1012[2][1]. Впрочем, найдено несколько «почти совершенных» параллелепипедов, у которых целочисленными являются все величины, кроме одной:

  •  — одна из диагоналей грани нецелая.
  • ,  — одно из рёбер нецелое.
  • Большое количество эйлеровых параллелепипедов (с нецелой пространственной диагональю, см. ниже).
  • Косоугольные параллелепипеды, у которых все линейные размеры целые. При этом достаточно одного непрямого угла[3][4][5].

С сентября 2017 года поиском совершенного кубоида начал заниматься проект распределённых вычислений yoyo@home[6]

Эйлеров параллелепипед

Факсимиле работы Хальке 1719 года с описанием минимального эйлерова параллелепипеда. Квадраты его сторон равны 442=1936, 2402=57 600, 1172=13 689
Все пять примитивных эйлеровых параллелепипедов со сторонами меньшими 1000

Прямоугольный параллелепипед, у которого целочисленны только рёбра и диагонали граней, называется эйлеровым. Самый маленький из эйлеровых параллелепипедов — (240, 117, 44), с диагоналями граней 267, 244 и 125, был найден Паулем Хальке[de] в 1719 году[1]. Ещё несколько эйлеровых параллелепипедов:

  • (275, 252, 240),
  • (693, 480, 140),
  • (720, 132, 85),
  • (792, 231, 160).

Эйлер описал два семейства эйлеровых параллелепипедов (отсюда название), которые задаются формулами аналогичными формулам для пифагоровых троек. Эти семейства включают не все эйлеровы параллелепипеды. Известно, что среди них не может быть совершенного кубоида[1]. Полного описания всех эйлеровых параллелепипедов нет.

Одно из семейств, полученных Эйлером, задается формулами при :

.

Известны такие требования к эйлеровому параллелепипеду (а значит, и к совершеному кубоиду)[7]:

  • Одно ребро делится на 4, второе делится на 16, третье нечётное (если, конечно, он примитивный — то есть, НОД(a, b, c) = 1).
  • Одно ребро делится на 3 и ещё одно — на 9.
  • Одно ребро делится на 5.
  • Одно ребро делится на 11.

См. также

Примечания

  1. 1 2 3 4 Иэн Стюарт. Величайшие математические задачи. М.: Альпина нон-фикшн, 2016. — С. 407. — 460 с. ISBN 978-5-91671-507-1.
  2. Bill Butler, The «Integer Brick» Problem
  3. J. F. Sawyer, C. A. Reiter, Perfect parallelepipeds exist, Math. Comp. 80(2011), No. 274, P. 1037—1040.
  4. B. D. Sokolowsky, A. G. VanHooft, R. M. Volkert, C. A. Reiter, An infinite family of perfect parallelepipeds, Math. Comp. 83(2014), No. 289, P. 2441—2454.
  5. W. Wyss, On Perfect Cuboids, arXiv:1506.02215v2 [math.NT] 27 Jun 2015.
  6. yoyo@home
  7. Primitive Euler Bricks.

Данная страница на сайте WikiSort.ru содержит текст со страницы сайта "Википедия".

Если Вы хотите её отредактировать, то можете сделать это на странице редактирования в Википедии.

Если сделанные Вами правки не будут кем-нибудь удалены, то через несколько дней они появятся на сайте WikiSort.ru .




Текст в блоке "Читать" взят с сайта "Википедия" и доступен по лицензии Creative Commons Attribution-ShareAlike; в отдельных случаях могут действовать дополнительные условия.

Другой контент может иметь иную лицензию. Перед использованием материалов сайта WikiSort.ru внимательно изучите правила лицензирования конкретных элементов наполнения сайта.

2019-2024
WikiSort.ru - проект по пересортировке и дополнению контента Википедии