Смещение вследствие пропущенных переменных (англ. Omitted variable bias) — явление в регрессионном анализе, связанное с получением, смещённых и несостоятельных оценок регрессионных коэффициентов вследствие некорректной спецификации модели, а именно невключения в оцениваемую модель независимых переменных, оказывающих причинно-следственное влияние на зависимую переменную, или невозможности включить в неё некую ненаблюдаемую независимую переменную.
Представим, что истинная регрессионная модель выглядит следующим образом:
где — вектор отклика, и — матрица и вектор независимых переменных. При условии, что и , то оценки и соответственно будут МНК-оценками регрессионной зависимости отклика от независимых переменных. В частности, (где — объединённая матрица независимых переменных).
Чтобы смоделировать смещение вследствие пропущенных переменных, опустим предиктор , включив его в состав нескоррелированной с части модели:
Тогда МНК-оценки коэффициентов при предикторах будут несостоятельны в сравнении с истинным коэффициентом :
Поскольку, согласно допущению изначальной модели, , то , тогда как
Данная страница на сайте WikiSort.ru содержит текст со страницы сайта "Википедия".
Если Вы хотите её отредактировать, то можете сделать это на странице редактирования в Википедии.
Если сделанные Вами правки не будут кем-нибудь удалены, то через несколько дней они появятся на сайте WikiSort.ru .