WikiSort.ru - Не сортированное

ПОИСК ПО САЙТУ | о проекте

В математике, симметричной булевой функцией называется такая булева функция, значение которой не зависит от перестановки её входных бит, а зависит только от количества единиц на входе[1].

Из определения следует, что вместо таблицы истинности, традиционно используемой для представления булевых функций, можно использовать более компактное представление для симметричных булевых функций от n переменных: в виде (n + 1)-вектора, в i-ой позиции которого (i = 0, …, n) записано значение функции для всех входных векторов, содержащих i единиц.

Особые случаи

Особыми случаями симметричных булевых функций являются[1]:

  • Пороговые функции: принимают значение 1 на всех входных векторах, имеющих k или более единиц для заданного k;
  • Функции точного значения: принимают значение 1 на всех входных векторах, имеющих ровно k единиц для заданного k;
  • Функции-счётчики: принимают значение 1 на всех входных векторах, количество единиц в которых сравнимо с k по модулю m для заданных k и m;
  • Функции чётности: принимают значение 1 на всех входных векторах с чётным числом единиц.

Примечания

  1. 1 2 Ingo Wegener, «The Complexity of Symmetric Boolean Functions», in: Computation Theory and Logic, Lecture Notes in Computer Science, vol. 270, 1987, pp. 433—442

Данная страница на сайте WikiSort.ru содержит текст со страницы сайта "Википедия".

Если Вы хотите её отредактировать, то можете сделать это на странице редактирования в Википедии.

Если сделанные Вами правки не будут кем-нибудь удалены, то через несколько дней они появятся на сайте WikiSort.ru .




Текст в блоке "Читать" взят с сайта "Википедия" и доступен по лицензии Creative Commons Attribution-ShareAlike; в отдельных случаях могут действовать дополнительные условия.

Другой контент может иметь иную лицензию. Перед использованием материалов сайта WikiSort.ru внимательно изучите правила лицензирования конкретных элементов наполнения сайта.

2019-2025
WikiSort.ru - проект по пересортировке и дополнению контента Википедии