Рёберный граф гиперграфа — это граф, множество вершин которого является множеством гиперрёбер гиперграфа, а два гиперребра смежны, если они имеют непустое пересечение. Другими словами, рёберный граф гиперграфа — это граф пересечений семейства конечных множеств. Понятие является обобщением рёберного графа обычного графа.
Вопросы о рёберных графах гиперграфов часто являются обобщениями вопросов о рёберных графах обычных графов. Например, гиперграф, все рёбра которого имеют размер k, называется k-униформным' (2-униформный гиперграф — это обычный граф). В теории гиперграфов часто естественно требовать k-униформность. Любой обычный граф является рёберным графом некоего гиперграфа, но если зафиксировать размер ребра k (число точек множества, принадлежащего ребру), не всякий граф является рёберным графом какого-либо k-униформного графа. Основная задача — описать рёберные графы для каждого k ≥ 3.
Гиперграф называется линейным, если любая пара гиперрёбер имеет в пересечении максимум одну вершину. Любой граф является рёберным графом не только некоторого гиперграфа, но и некоторого линейного гиперграфа[1].
Байнеке[2] описал рёберные графы обычных графов путём перечисления 9 запрещённых порождённых подграфов (смотрите статью о рёберных графах). Никакого описания посредством запрещённых порождённых подграфов не известно для рёберных графов k-униформных гиперграфов для любого k ≥ 3 и Ловас[3] показал, что не существует такого описания в виде конечного списка для k = 3.
Краус[4] описал рёберные графы обычных графов в терминах покрытия кликами (Смотрите Рёберный граф). Глобальное описание краусовского типа для рёберных графов k-униформных гиперграфов для любого k ≥ 3 дано Бержем[1].
Глобальное описание краусовского типа для рёберных графов k-униформных линейных гиперграфов для любого k ≥ 3 дано Найком, Рао, Шрикханде и Сингхи[5]. В то же время они нашли конечное число запрещённых порождённых подграфов для линейных 3-униформных гиперграфов с минимальной степенью вершины не меньше 69. Метельский и Тышкевич[6] и Якобсон, Кезди, Лехель[7] улучшили эту границу до 19, а Скумс, Суздаль и Тышкевич[8] сократили это значение до 16. Метельский и Тышкевич[6] также доказали, что для k > 3 не существует подобного списка для линейных k-униформных гиперграфов, какое бы ограничение на степень не накладывали.
Сложность поиска описания линейных k-униформных гиперграфов заключается в том, что имеется бесконечно много запрещённых порождённых подграфов. Чтобы дать пример, для m > 0 возьмём цепочку из m графов-алмазов, так чтобы алмазы имели общие вершины второго порядка, и добавим некоторые висячие вершины, как показано на рисунке, чтобы получить одно из семейств минимальных запрещённых подграфов[5][9].
Имеется ряд интересных описаний для рёберных графов линейных k-униформных гиперграфов, данных разными авторами[10], при ограничениях на минимальную степень вершин или минимальную степень рёбер. Минимальная степень ребра для описания рёберных графов k-униформных линейных гиперграфов для любого k ≥ 3, не меньшая k3−2k2+1 в работе Найка, Рао, Шрикханде и Сигхи[5], уменьшена до 2k2−3k+1 в работах Якобсона, Кезди, Лехела[7] и Зверовича[11].
Сложность распознавания рёберных графов линейных k-униформных гиперграфов без ограничений на минимальную степень (или минимальную степень рёбер) неизвестна. Для k = 3 и минимальной степени по меньшей мере 19 распознавания возможно за полиномиальное время[7][6]). Скумс, Суздаль и Тышкевич[8] уменьшили минимальную степень до 10.
Есть много нерешённых задач и гипотез в работах Найка и др., Якобсона и др., Метельского и др. и Зверовича.
Для улучшения этой статьи желательно: |
Данная страница на сайте WikiSort.ru содержит текст со страницы сайта "Википедия".
Если Вы хотите её отредактировать, то можете сделать это на странице редактирования в Википедии.
Если сделанные Вами правки не будут кем-нибудь удалены, то через несколько дней они появятся на сайте WikiSort.ru .