WikiSort.ru - Не сортированное

ПОИСК ПО САЙТУ | о проекте

В функциональном анализе и связанных областях математики пространством Смит называется полное локально выпуклое k-пространство , обладающее компактом , поглощающим любое другое компактное множество (то есть для некоторого ).

Пространства Смит названы в честь М. Ф. Смит[1], впервые описавшей их как двойственные к банаховым пространствам в некоторых вариантах теории двойственности для топологических векторных пространств. Все пространства Смит стереотипны и находятся в отношении стереотипной двойственности с банаховыми пространствами[2][3]:

  • для любого банахова пространства его стереотипно сопряженное пространство[4] является пространством Смит,
  • и наоборот, для любого пространства Смит его стереотипно сопряженное пространство является банаховым пространством.

Примечания

  1. M.F.Smith, 1952.
  2. S.S.Akbarov, 2003.
  3. S.S.Akbarov, 2009.
  4. Стереотипно сопряженным пространством к локально выпуклому пространству называется пространство всех линейных непрерывных функционалов , наделенное топологией равномерной сходимости на вполне ограниченных множествах в .

Литература

  • Schaefer, Helmuth H. Topological vector spaces. — New York : The MacMillan Company, 1966. ISBN 0-387-98726-6.
  • Robertson, A.P. Topological vector spaces. Cambridge University Press, 1964. — Vol. 53.
  • Smith, M.F. (1952). “The Pontrjagin duality theorem in linear spaces”. Annals of Mathematics. 56 (2): 248—253. DOI:10.2307/1969798. Внешняя ссылка в |title= (справка на английском)

Данная страница на сайте WikiSort.ru содержит текст со страницы сайта "Википедия".

Если Вы хотите её отредактировать, то можете сделать это на странице редактирования в Википедии.

Если сделанные Вами правки не будут кем-нибудь удалены, то через несколько дней они появятся на сайте WikiSort.ru .




Текст в блоке "Читать" взят с сайта "Википедия" и доступен по лицензии Creative Commons Attribution-ShareAlike; в отдельных случаях могут действовать дополнительные условия.

Другой контент может иметь иную лицензию. Перед использованием материалов сайта WikiSort.ru внимательно изучите правила лицензирования конкретных элементов наполнения сайта.

2019-2025
WikiSort.ru - проект по пересортировке и дополнению контента Википедии