Принцип симметрии в основном применяется для аналитического продолжения функций, которые аналитичны на некотором множестве Далее, пусть множество непусто, и на этом множестве функция принимает исключительно вещественные значения.
Тогда можно осуществить аналитическое продолжение функции с множества на большее множество , где , с помощью следующей функции:
Пользуясь принципом соответствия границ, можно доказать более общее утверждение, которое обычно фигурирует в специальной литературе под тем же названием.
Допустим, что заданы области , далее, — дуги обобщенных окружностей. Обозначим через область, которая симметрична относительно , аналогично определяется . Теперь, если конформно отображает на , притом , тогда может быть аналитически продолжена до конформного отображения на .
![]() |
Это заготовка статьи по математике. Вы можете помочь проекту, дополнив её. |
Данная страница на сайте WikiSort.ru содержит текст со страницы сайта "Википедия".
Если Вы хотите её отредактировать, то можете сделать это на странице редактирования в Википедии.
Если сделанные Вами правки не будут кем-нибудь удалены, то через несколько дней они появятся на сайте WikiSort.ru .